DOI QR코드

DOI QR Code

Proteomic profiles and ultrastructure of regenerating protoplast of Bryopsis plumosa (Chlorophyta)

  • Klochkova, Tatyana A. (Department of Biology, Kongju National University) ;
  • Kwak, Min Seok (Department of Biology, Kongju National University) ;
  • Kim, Gwang Hoon (Department of Biology, Kongju National University)
  • Received : 2016.10.06
  • Accepted : 20161131
  • Published : 2016.12.15

Abstract

When a multinucleate cell of Bryopsis plumosa was collapsed by a physical wounding, the extruded protoplasm aggregated into numerous protoplasmic masses in sea water. A polysaccharide envelope which initially covered the protoplasmic mass was peeled off when a cell membrane developed on the surface of protoplast in 12 h after the wounding. Transmission electron microscopy showed that the protoplasmic mass began to form a continuous cell membrane at 6 h after the wounding. The newly generated cell membrane repeated collapse and rebuilding process several times until cell wall developed on the surface. Golgi bodies with numerous vesicles accumulated at the peripheral region of the rebuilding cell at 24 h after the wounding when the cell wall began to develop. Several layers of cell wall with distinctive electron density developed within 48-72 h after the wounding. Proteome profile changed dramatically at each stage of cell rebuilding process. Most proteins, which were up-regulated during the early stage of cell rebuilding disappeared or reduced significantly by 24-48 h. About 70-80% of protein spots detected at 48 h after the wounding were newly appeared ones. The expression pattern of 29 representative proteins was analyzed and the internal amino acid sequences were obtained using mass spectrometry. Our results showed that a massive shift of gene expression occurs during the cell-rebuilding process of B. plumosa.

Keywords

References

  1. Aitken, A. 1996. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol. 6:341-347. https://doi.org/10.1016/0962-8924(96)10029-5
  2. Bottalico, A., Felicini, G. P., Delle Foglie, C. I. & Perrone, C. 2008. Developmental stages of attachment of in vitro protoplasts in two Mediterranean Valonia species (Siphonocladales, Chlorophyta). Plant Biosyst. 142:99-105. https://doi.org/10.1080/11263500701872598
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Celis, J. E., Celis, P., Ostergaard, M., Basse, B., Lauridsen, J. B., Ratz, G., Rasmussen, H. H., Orntoft, T. F., Hein, B., Wolf, H. & Celis, A. 1999a. Proteomics and immunohistochemistry define some of the steps involved in the squamous differentiation of the bladder transitional epithelium: a novel strategy for identifying metaplastic lesions. Cancer Res. 59:3003-3009.
  5. Celis, J. E., Ostergaard, M., Rasmussen, H. H., Gromov, P., Gromova, I., Varmark, H., Palsdottir, H., Magnusson, N., Andersen, I., Basse, B., Lauridsen, J. B., Ratz, G., Wolf, H., Orntoft, T. F., Celis, P. & Celis, A. 1999b. A comprehensive protein resource for the study of bladder cancer. Electrophoresis 20:300-309. https://doi.org/10.1002/(SICI)1522-2683(19990201)20:2<300::AID-ELPS300>3.0.CO;2-Q
  6. Choi, J.-I., Yoon, M., Lim, S., Kim, G. H. & Park, H. 2015. Effect of gamma irradiation on physiological and proteomic changes of Arctic Zygnema sp. (Chlorophyta, Zygnematales). Phycologia 54:333-341. https://doi.org/10.2216/14-106.1
  7. Ellis, R. J. & van der Vies, S. M. 1991. Molecular chaperones. Annu. Rev. Biochem. 60:321-347. https://doi.org/10.1146/annurev.bi.60.070191.001541
  8. Feldman, D. E. & Frydman, J. 2000. Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol. 10:26-33. https://doi.org/10.1016/S0959-440X(99)00044-5
  9. Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J. & Job, D. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126:835-848. https://doi.org/10.1104/pp.126.2.835
  10. Han, J. W., Jung, M. G., Kim, M. J., Yoon, K. S., Lee, K. P. & Kim, G. H. 2010. Purification and characterization of a D-mannose specific lectin from the green marine alga, Bryopsis plumosa. Phycol. Res. 58:143-150. https://doi.org/10.1111/j.1440-1835.2010.00572.x
  11. Han, J. W., Yoon, K. S., Jung, M. G., Chah, K.-H. & Kim, G. H. 2012. Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta). Algae 27:55-62. https://doi.org/10.4490/algae.2012.27.1.055
  12. Han, J. W., Yoon, K. S., Klochkova, T. A., Hwang, M.-S. & Kim, G. H. 2011. Purification and characterization of a lectin, BPL-3, from the marine green alga Bryopsis plumosa. J. Appl. Phycol. 23:745-753. https://doi.org/10.1007/s10811-010-9575-x
  13. Jung, M. G., Lee, K. P., Choi, H.-G., Kang, S.-H., Klochkova, T. A., Han, J. W. & Kim, G.-H. 2010. Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from Bryopsis plumosa. J. Appl. Phycol. 22:793-802. https://doi.org/10.1007/s10811-010-9521-y
  14. Kim, G. H. & Klochkova, T. A. 2004. Development of the protoplasts induced from wound-response in fifteen marine green algae. Jpn. J. Phycol. 52(Suppl.):111-116.
  15. Kim, G. H., Klochkova, T. A. & Kang, Y.-M. 2001. Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumosa. J. Cell Sci. 114:2009-2014.
  16. Kim, G. H., Klochkova, T. A. & West, J. A. 2002. From protoplasm to swarmer: regeneration of protoplasts from disintegrated cells of the multicellular marine green alga Microdictyon umbilicatum (Chlorophyta). J. Phycol. 38:174-183. https://doi.org/10.1046/j.1529-8817.2002.01053.x
  17. Kim, G. H., Klochkova, T. A., Yoon, K.-S., Song, Y.-S. & Lee, K. P. 2006. Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). J. Phycol. 42:86-95. https://doi.org/10.1111/j.1529-8817.2006.00162.x
  18. Kim, G. H., Shim, J. B., Klochkova, T. A., West, J. A. & Zuccarello, G. C. 2008. The utility of proteomics in algal taxonomy: Bostrychia radicans / B. moritziana (Rhodomelaceae, Rhodophyta) as a model study. J. Phycol. 44:1519-1528. https://doi.org/10.1111/j.1529-8817.2008.00592.x
  19. Klochkova, T. A., Chah, O.-K., West, J. A. & Kim, G. H. 2003. Cytochemical and ultrastructural studies on protoplast formation from disintegrated cells of marine alga Chaetomorpha aerea (Chlorophyta). Eur. J. Phycol. 38:205-216. https://doi.org/10.1080/0967026031000136330
  20. Klochkova, T. A., Yoon, K.-S., West, J. A. & Kim, G. H. 2005. Experimental hybridization between some marine coenocytic green algae using protoplasms extruded in vitro. Algae 20:239-249. https://doi.org/10.4490/ALGAE.2005.20.3.239
  21. Kobayashi, K. & Kanaizuka, Y. 1985. Reunification of subcellularfractions of Bryopsis into viable cells. Plant Sci.40:129-135.
  22. National Center for Biotechnology Information (NCBI). 2016. GenBank. Available from: http//www.ncbi.nlm.nih.gov. Accessed Oct 15, 2016.
  23. Niu, J., Wang, G., Lu, F., Zhou, B. & Peng, G. 2009. Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides. Chin. J. Oceanol. Limnol. 27:502-512. https://doi.org/10.1007/s00343-009-9157-4
  24. Oakley, B. R., Kirsch, D. R. & Morris, N. R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105:361-363. https://doi.org/10.1016/0003-2697(80)90470-4
  25. Pak, J. Y., Solorzano, C., Arai, M. & Nitta, T. 1991. Two distinct steps for spontaneous generation of subprotoplasts from a disintegrated Bryopsis cell. Plant Physiol. 96:819-825. https://doi.org/10.1104/pp.96.3.819
  26. Pandey, A. & Mann, M. 2000. Proteomics to study genes and genomes. Nature 405:837-846. https://doi.org/10.1038/35015709
  27. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. 1996. Mass spectrometric sequencing of proteins from silverstained polyacrylamide gels. Anal. Chem. 68:850-858. https://doi.org/10.1021/ac950914h
  28. Smith, D. F., Whitesell, L. & Katsanis, E. 1998. Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol. Rev. 50:493-514.
  29. Spandidos, A. & Rabbitts, T. H. 2002. Sub-proteome differential display: single gel comparison by 2D electrophoresis and mass spectrometry. J. Mol. Biol. 318:21-31. https://doi.org/10.1016/S0022-2836(02)00052-9
  30. Tatewaki, M. & Nagata, K. 1970. Surviving protoplasts in vitro and their development in Bryopsis. J. Phycol. 6:401-403.
  31. Tyers, M. & Mann, M. 2003. From genomics to proteomics. Nature 422:193-197. https://doi.org/10.1038/nature01510
  32. Xu, M., Lu, F., Peng, G., Niu, J. & Wang, G. 2012. Subcellular localization of a lectin in Bryopsis hypnoides (Bryopsidales, Chlorophyceae) and its expression during cell organellar aggregation. Phycologia 51:340-346. https://doi.org/10.2216/10-37.1
  33. Yamagishi, T., Hishinuma, T. & Kataoka, H. 2004. Novel sporophyte-like plants are regenerated from protoplasts fused between sporophytic and gametophytic protoplasts of Bryopsis plumosa. Planta 219:253-260. https://doi.org/10.1007/s00425-004-1230-9
  34. Yoon, K. S., Lee, K. P., Klochkova, T. A. & Kim, G. H. 2008. Molecular characterization of the lectin, bryohealin, involved in protoplast regeneration of the marine alga Bryopsis plumosa (Chlorophyta). J. Phycol. 44:103-112. https://doi.org/10.1111/j.1529-8817.2007.00457.x
  35. Zhang, W. & Chait, B. T. 2000. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72:2482-2489. https://doi.org/10.1021/ac991363o

Cited by

  1. Functional Expression and Characterization of the Recombinant N-Acetyl-Glucosamine/N-Acetyl-Galactosamine-Specific Marine Algal Lectin BPL3 vol.16, pp.1, 2018, https://doi.org/10.3390/md16010013
  2. Incorporation of Magnetic Nanoparticles into Protoplasts of Microalgae Haematococcus pluvialis : A Tool for Biotechnological Applications vol.25, pp.21, 2016, https://doi.org/10.3390/molecules25215068
  3. Magnetic Immobilization and Growth of Nannochloropsis oceanica and Scenedasmus almeriensis vol.11, pp.1, 2016, https://doi.org/10.3390/plants11010072