DOI QR코드

DOI QR Code

Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method

  • Park, Jaeyeon (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Jeong, Hae Jin (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Yoon, Eun Young (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Moon, Seung Joo (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)
  • Received : 2016.10.03
  • Accepted : 2016.12.07
  • Published : 2016.12.15

Abstract

To develop an easy and rapid method of quantifying lipid contents of marine dinoflagellates, we quantified lipid contents of common dinoflagellate species using a colorimetric method based on the sulpho-phospho-vanillin reaction. In this method, the optical density measured using a spectrophotometer was significantly positively correlated with the known lipid content of a standard oil (Canola oil). When using this method, the lipid content of each of the dinoflagellates Alexandrium minutum, Prorocentrum micans, P. minimum, and Lingulodinium polyedrum was also significantly positively correlated with the optical density and equivalent intensity of color. Thus, when comparing the color intensity or the optical density of a sample of a microalgal species with known color intensities or optical density, the lipid content of the target species could be rapidly quantified. Furthermore, the results of the sensitivity tests showed that only $1-3{\times}10^5cells$ of P. minimum and A. minutum, $10^4cells$ of P. micans, and $10^3cells$ of L. polyedrum (approximately 1-5 mL of dense cultures) were needed to determine the lipid content per cell. When the lipid content per cell of 9 dinoflagellates, a diatom, and a chlorophyte was analyzed using this method, the lipid content per cell of these microalgae, with the exception of the diatom, were significantly positively correlated with cell size, however, volume specific lipid content per cell was negatively correlated with cell size. Thus, this sulpho-phospho-vanillin method is an easy and rapid method of quantifying the lipid content of autotrophic, mixotrophic, and heterotrophic dinoflagellate species.

Keywords

References

  1. Anderson, D. M. 1997. Turning back the harmful red tide. Nature 388:513-514. https://doi.org/10.1038/41415
  2. Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. https://doi.org/10.1139/o59-099
  3. Byreddy, A. R., Gupta, A., Barrow, C. J. & Puri, M. 2016. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Methods 125:28-32. https://doi.org/10.1016/j.mimet.2016.04.002
  4. Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409. https://doi.org/10.1111/j.1550-7408.1999.tb04620.x
  5. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48:1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  6. Costas, E. 1990. Genetic variability in growth rates of marine dinoflagellates. Genetica 82:99-102. https://doi.org/10.1007/BF00124638
  7. de la Jara, A., Mendoza, H., Martel, A. Molina, C., Nordstron, L., de la Rosa, V. & Diaz, R. 2003. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J. Appl. Phycol. 15:433-438. https://doi.org/10.1023/A:1026007902078
  8. Doan, T. T. Y., Sivaloganathan, B. & Obbard, J. P. 2011. Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534-2544. https://doi.org/10.1016/j.biombioe.2011.02.021
  9. Drevon, B. & Schmit, J. M. 1964. La reaction sulpho-phospho-vanillique dans l'etude des lipides seriques. Bull. Trav. Soc. Pharm. Lyon 8:173-178.
  10. Eppley, R. W. & Sloan, P. R. 1966. Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol. Plant. 19:47-59. https://doi.org/10.1111/j.1399-3054.1966.tb09073.x
  11. Folch, J., Lees, M. & Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
  12. Fuentes-Grunewald, C., Bayliss, C., Fonlut, F. & Chapuli, E. 2016. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 218:533-540. https://doi.org/10.1016/j.biortech.2016.06.128
  13. Fuentes-Grunewald, C., Garces, E., Alacid, E., Sampedro, N., Rossi, S. & Camp, J. 2012. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J. Ind. Microbiol. Biotechnol. 39:207-216. https://doi.org/10.1007/s10295-011-1016-6
  14. Fuentes-Grunewald, C., Garces, E., Rossi, S. & Camp, J. 2009. Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36:1215-1224. https://doi.org/10.1007/s10295-009-0602-3
  15. Furnas, M. J. 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton Res. 12:1117-1151. https://doi.org/10.1093/plankt/12.6.1117
  16. Grzebyk, D., Bechemin, C., Ward, C. J., Verite, C., Codd, G. A. & Maestrini, S. Y. 2003. Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minutum. J. Plankton Res. 25:1185-1199. https://doi.org/10.1093/plankt/fbg088
  17. Guerrini, F., Pezzolesi, L., Feller, A., Riccardi, M., Ciminiello, P., Dell'Aversano, C., Tartaglione, L., Dello Iacovo, E., Fattorusso, E., Forino, M. & Pistocchi, R. 2010. Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. Toxicon 55:211-220. https://doi.org/10.1016/j.toxicon.2009.07.019
  18. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  19. Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  20. Hansen, P. J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114:327-334. https://doi.org/10.1007/BF00349535
  21. Hao, Z., Liu, P., Yang, X., Shi, J. & Zhang, S. 2013. Screening method for lipid-content microalgae based on sulpho-phospho-vanillin reaction. Adv. Mater. Res. 610-613:3532-3535.
  22. Inouye, L. S. & Lotufo, G. R. 2006. Comparison of macrogravimetric and micro-colorimetric lipid determination methods. Talanta 70:584-587. https://doi.org/10.1016/j.talanta.2006.01.024
  23. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285. https://doi.org/10.1111/j.0022-3646.1996.00279.x
  24. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. https://doi.org/10.1073/pnas.1204302109
  25. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  26. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microbial Ecol. 40:133-150. https://doi.org/10.3354/ame040133
  27. Kagami, M. & Urabe, J. 2001. Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa. Limnology 2:111-117. https://doi.org/10.1007/s102010170006
  28. Kondo, K., Seike, Y. & Date, Y. 1990. Red tides in the brackish Lake Nakanoumi (II). Relationships between the occurrence of Prorocentrum minimum red tide and environmental conditions. Bull. Plankton Soc. Jpn. 37:19-34.
  29. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014a. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
  30. Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014c. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152. https://doi.org/10.4490/algae.2014.29.2.137
  31. Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H. & Lim, A. S. 2014b. Morphological characterization of Symbiodinium minutum and S. psygmophilum belonging to clade B. Algae 29:299-310. https://doi.org/10.4490/algae.2014.29.4.299
  32. Malapascua, J. R., Chou, H.-N., Lu, W.-J. & Lan, J. C.-W. 2012. Development of an indirect method of microalgal lipid quantification using a lysochrome dye, Nile red. Afr. J. Biotechnol. 11:13518-13527.
  33. Mansour, M. P., Volkman, J. K., Jackson, A. E. & Blackburn. S. I. 1999. The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35:710-720. https://doi.org/10.1046/j.1529-8817.1999.3540710.x
  34. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. & Yang, J. W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155:330-333.
  35. Muscatine, L. 1990. The role of symbiotic algae in carbon and energy flux in reef corals. In Dubinski, Z. (Ed.) Coral reefs: ecosystems of the world. Elsevier, NY, p. 75-87.
  36. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40. https://doi.org/10.1016/j.hal.2013.10.004
  37. Piretti, M. V., Pagliuca, G., Boni, L., Pistocchi, R., Diamante, M. & Gazzotti, T. 1997. Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. J. Phycol. 33:61-67. https://doi.org/10.1111/j.0022-3646.1997.00061.x
  38. Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  39. Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
  40. Vatassery, G. T., Sheridan, M. A., Krezowski, A. M., Divine, A. S. & Bach, H. L. 1981. Use of the sulpho-phospo-vanillin reaction in a routine method for determining total lipids in human cerebrospinal fluid. Clin. Biochem. 14:21-24. https://doi.org/10.1016/0009-9120(81)90120-X

Cited by

  1. An advanced tool, droplet digital PCR (ddPCR), for absolute quantification of the red-tide dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae) vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.9.10
  2. Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.5
  3. Trophic upgrading and mobilization of wax esters in microzooplankton vol.7, pp.None, 2016, https://doi.org/10.7717/peerj.7549
  4. TiO2 doped polydimethylsiloxane (PDMS) and Luffa cylindrica based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels vol.9, pp.39, 2016, https://doi.org/10.1039/c9ra03821c
  5. Biochemical composition of cyanobacterium Calothrix marchica and perspectives its using in biotechnology vol.30, pp.2, 2016, https://doi.org/10.15407/alg30.02.160
  6. Adaptation of the sulfophosphovanillin method of analysis of total lipids for various biological objects as exemplified by Drosophila melanogaster vol.24, pp.4, 2016, https://doi.org/10.18699/vj20.636
  7. Effects of PEG-Coated Silver and Gold Nanoparticles on Spirulina platensis Biomass during Its Growth in a Closed System vol.10, pp.8, 2016, https://doi.org/10.3390/coatings10080717
  8. Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil vol.13, pp.None, 2016, https://doi.org/10.1186/s13068-020-01688-x
  9. Sustainable biological system for the removal of high strength ammoniacal nitrogen and organic pollutants in poultry waste processing industrial effluent vol.70, pp.12, 2020, https://doi.org/10.1080/10962247.2020.1731013
  10. Rapid analytical methods for the microalgal and cyanobacterial biorefinery: Application on strains of industrial importance vol.10, pp.1, 2016, https://doi.org/10.1002/mbo3.1156
  11. The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation-New Perspectives against Global Warming vol.13, pp.6, 2016, https://doi.org/10.3390/sym13060997
  12. Bioremediation Capacity of Edaphic Cyanobacteria Nostoc linckia for Chromium in Association with Other Heavy-Metals-Contaminated Soils vol.9, pp.1, 2022, https://doi.org/10.3390/environments9010001