• Title/Summary/Keyword: Gold-DNA probe

Search Result 23, Processing Time 0.025 seconds

Array-based Nano-amplification Technique Was Applied in Detection of Hepatitis E Virus

  • Liu, Hui-Hui;Cao, Xuan;Yang, Yong;Liu, Ming-Gui;Wang, Ye-Fu
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.247-252
    • /
    • 2006
  • A rapid method for the detection of Hepatitis E Virus (HEV) was developed by utilizing nano-gold labeled oligonucleotide probes, silver stain enhancement and the microarray technique. The 5'-end -$NH_2$ modified oligonucleotide probes were immobilized on the surface of the chip base as the capture probe. The detection probe was made of the 3'-end -SH modified oligonucleotide probe and nano-gold colloid. The optimal concentrations of these two probes were determined. To test the detection sensitivity and specificity of this technique, a conservative fragment of the virus RNA was amplified by the RT-PCR/PCR one step amplification. The cDNA was hybridized with the capture probes and the detection probes on microarray. The detection signal was amplified by silver stain enhancement and could be identified by naked eyes. 100 fM of amplicon could be detected out on the microarray. As the results, preparation of nano-gold was improved and faster. Development time also was shortened to 2 min. Thus, considering high efficiency, low cost, good specificity and high sensitivity, this technique is alternative for the detection of HEV.

Development of Human Papillomavirus DNA Array by Using Lateral Flow Membrane Assay (Lateral Flow Membrane를 이용한 인유두종 바이러스 DNA Array의 개발)

  • Kim, Ki-Whang;Lee, Hyung-Ku;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.346-351
    • /
    • 2008
  • This study develops DNA array which can detect specific sequence of human papilomavirus (HPV) by using lateral flow membrane assay which is usually used for point of care test including pregnant diagnosis. Principle of HPV DNA array is as follow; fixing DNA probe which is peculiar to HPV type 6, 11, 16, 18, 31, 45 on a surface of lateral flow membrane and inducing hybridization response between probe and HPV PCR products which is obtained by using biotin-labeled MY09/l1 primers. And then, we can see the result of DNA hybridization that streptavidin labelled colloidal gold is responded with hybrid biotin. Lateral flow membrane array developed in this study confirms major HPV type economically and conveniently compared with existing HPV DNA chip method.

Probe-based Charge Injection Study of DNA Charge Transfer for Applications to Molecular Electro-optic Switching (전극 기반의 전하 주입을 통한 DNA 전하수송 특성 측정)

  • Ryu, Ho-Jeong;Kim, Hee-Young;Kim, Dong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.53-59
    • /
    • 2011
  • Charge transfer through DNA oligonucleotides has been investigated for potential applications of DNA into molecular electrooptic switching devices. Electrons were injected using gold electrode probes where DNA oligomers were adsorbed that are separated in medium. The results show that increased adsorption of DNA reduces the ionization current due to the combined effect of charge transfer through DNA and surface-limited charge transport. The probe-based charge injection was extended to examine the capability of extinguishing fluorescence of Cy3 dye molecules attached to DNA. It is expected that the results may be employed to implementing a novel electrooptic switching device based on DNA molecules.

Studies on In Situ Hybridization of Electron Microscopy for Detection of Viral RNA (전자현미경 In Situ Hybridization에 의한 Viral RNA의 진단에 관한 연구)

  • 최원기;주경웅;김석홍
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.257-265
    • /
    • 1996
  • Simple stain and electron microscopic in situ hybridization is studied and applied for the identification of rabbit haemorrhagic disease viral RNA in a unicrylated preparation of the liver after innoculation of rabbit haemorrhagic disease virus. Hybridization for detection of viral RNA in unicryl embedded tissues using complementary 84 bases oligonucleotide probe labelled by biotin CE-phosphoramidite compared with 4717∼4800 sequences of rabbit haemorrhagic disease virus, modified hybridization protocol and antibiotin antibody-l0nm gold as signal marker. The best results were obtained in 0.02% glutaraldehyde, Unicryl resin cell block, biotinylated oligonucleotide probes, antibiotin-l0nm gold. In this report, RHD viral RNA was distributed widely within the mitochondria and nucleus of liver cell by electron microscopic in situ hybridization. In situ hybridization has become a standard method for localizing DNA or RNA sequences in tissue or celt preparation. In situ hybridization is detected the virus genome in the cells and tissue as specifically compared with others nucleic acid hybridization method.

  • PDF

Detection of DNA Hybridization Characteristics Using Electrochemical methods (전기화학법을 이용한 DNA Hybridization 특성 검출)

  • Kim, Do-Kyun;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1569-1571
    • /
    • 2002
  • The determination of DNA hybridization can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, The determination of hybridization is very important for the improvement of DNA detection system. In this study, we report the characterization of the DNA hybridization by the electricalchemical methods. A new electrochemical biosensor is described for voltammetric detection of gene sequence related to probe oligonucleotide of bacterium Escherichia coli O157:H7. The biosensor involves the immobilization of a 18-mer probe oligonucleotide, which is complemetary to a specific gene sequence related to Escherichia coli O157:H7 on a gold electrode through specific adsorption. The probe oligonucleotide was used to determine the amount of target oligonucleotide in solution using mitoxantrone(MTX) as the electrochemical indicators. The cathodic peak currents $(I_{peak})$ of MTX were linearly related to the concentration of the target oligonucleotide sequence in the range $1[{\mu}M]{\sim}0.1[nM]$. The detection limit of this approach was 0.01[nM]. In addition, these indicators were capable of selectivity discriminating against various mismatching condition.

  • PDF

Label-Free Electrochemical DNA Detection Based on Electrostatic Interaction between DNA and Ferrocene Dendrimers

  • Lee, Ji-Young;Kim, Byung-Kwon;Hwang, Seong-Pil;Lee, Young-Hoon;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3099-3102
    • /
    • 2010
  • A label-free DNA detection method was developed for a simple electrochemical DNA sensor with a short assay time. Self-assembled monolayers of peptide nucleic acid were used as a probe on gold electrodes. The formation of the self-assembled monolayers on the gold electrodes was successfully checked by means of cyclic voltammetry. The target DNA, hybridized with peptide nucleic acid, can be detected by the anodic peak current of ferrocene dendrimers, which interact electrostatically with the target DNA. This anodic peak current was measured by square wave voltammetry at 0.3 V to decrease the detection limit on the order of the nanomolar concentrations. As a result, the label-free electrochemical DNA sensor can detect the target DNA in concentrations ranging from 1 nM to $1\;{\mu}M$ with a detection limit of 1 nM.

Eletrochemical Detection of Gene using Microelectrode-array DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • ;;Eiichi Tamiya
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.729-737
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

Electrochemical Gene Detection Using Microelectrode Array on a DNA Chip

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.145-148
    • /
    • 2004
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 and concentrated at the electrode surface through association with the formed hybrid. This suggested that this DNA chip could recognize the sequence specific genes.

Electrochemical Detection of Genes Using Microeledtrode Array DNA Chip (미소전극어에이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2125-2127
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Genome Detection Using Hoechst 33258 Groove Binder (Hoechst 33258 Groove Binder를 이용한 DNA칩)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.372-373
    • /
    • 2006
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF