Probe-based Charge Injection Study of DNA Charge Transfer for Applications to Molecular Electro-optic Switching

전극 기반의 전하 주입을 통한 DNA 전하수송 특성 측정

  • Ryu, Ho-Jeong (Nanomedical National Core Research Center, Yonsei University) ;
  • Kim, Hee-Young (Department of Chemistry, Yonsei University) ;
  • Kim, Dong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
  • 류호정 (연세대학교 나노메디컬 국가핵심연구센터) ;
  • 김희영 (연세대학교 화학과) ;
  • 김동현 (연세대학교 전기전자공학부)
  • Received : 2011.02.10
  • Accepted : 2011.05.12
  • Published : 2011.05.25

Abstract

Charge transfer through DNA oligonucleotides has been investigated for potential applications of DNA into molecular electrooptic switching devices. Electrons were injected using gold electrode probes where DNA oligomers were adsorbed that are separated in medium. The results show that increased adsorption of DNA reduces the ionization current due to the combined effect of charge transfer through DNA and surface-limited charge transport. The probe-based charge injection was extended to examine the capability of extinguishing fluorescence of Cy3 dye molecules attached to DNA. It is expected that the results may be employed to implementing a novel electrooptic switching device based on DNA molecules.

본 논문에서는 DNA 올리고뉴클리오타이드(oligonucleotide)를 통한 전하 이동을 기반으로 하는 분자성 전자광학 스위칭 소자를 제시한다. DNA 올리고머(oligomer)가 흡착되어 있는 금전극에 전자들이 주입되어 전극으로부터 DNA 올리고머로 전하가 흘러가게 하고 이 전하의 이동도를 광학적 스위칭으로 확인할 수 있도록 제안되었다. DNA 올리고머의 흡착량이 증가함에 따라 DNA를 통한 전하의 이동성과 전극 표면에서의 전하전달 제한성으로 인해 전리전류는 감소하였다. DNA의 끝단에 합성된 Cy3 형광 분자의 점멸도를 전극 기반의 전하 주입법을 이용하여 확인하였다. 이러한 결과들은 DNA 올리고머를 이용한 새로운 분자성 전자광학 스위칭 소자에 이용될 수 있다.

Keywords

References

  1. G. B. Schuster, Long-Range Charge Transfer in DNA I, II , Springer Verlag, 2004.
  2. Z.-B. Liu, J.-G. Tian, W.-P. Zang, W.-Y. Zhou, F. Song, C.-P. Zhang, J.-Y. Zheng, and H. Xu, "Flexible alteration of optical nonlinearities of iodine charge-transfer complexes in solutions," Opt. Lett., Vol. 29, No. 10, pp. 1099-1101, May 2004. https://doi.org/10.1364/OL.29.001099
  3. R. L. Sutherland, M. C. Brant, J. Heinrichs, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz, "Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores," J. Opt. Soc. Am.. B, Vol. 22, No. 9, pp. 1939-1948, September 2005. https://doi.org/10.1364/JOSAB.22.001939
  4. J. C. Genereux and J. K. Barton, "Mechanisms for DNA charge transport," Chem. Rev., Vol. 110, pp. 1642-1662, November 2009.
  5. P. K. Sharma, R. K. Dutta, and A. C. Pandey, "Size dependence of Eu-O charge transfer process on luminescence characteristics of $YBO_3$:$Eu^{3+}$ nanocrystals," Opt. Lett., Vol. 35, No. 14, pp. 2331-2333, July 2010. https://doi.org/10.1364/OL.35.002331
  6. A. P. de Silva and S. Uchiyama, "Molecular logic and computing," Nature Nanotechnol., Vol. 2, pp. 399-410, July 2007. https://doi.org/10.1038/nnano.2007.188
  7. B. M. Frezza, S. L. Cockroft, and M. R. Ghadiri, "Modular multi-level circuits from immobilized DNA-based logic gates," J. Am. Chem. Soc., Vol. 129, pp. 14875-14879, November 2007. https://doi.org/10.1021/ja0710149
  8. S. O. Kelley and J. K. Barton, "Electron transfer between bases in double helical DNA," Science, Vol. 283, No. 5400, pp. 375-381, January 1999. https://doi.org/10.1126/science.283.5400.375
  9. X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, and C. Nuckolls, "Conductivity of a single DNA duplex bridging a carbon nanotube gap," Nature Nanotechnol., Vol. 3, pp. 163-167, February 2008. https://doi.org/10.1038/nnano.2008.4
  10. T. Takada, M. Fujitsuka, and T. Majima, "Single-molecule observation of DNA charge transfer," Proc. Natl. Acad. Sci., Vol. 104, No. 27, pp. 11179-11183, July 2007. https://doi.org/10.1073/pnas.0700795104
  11. C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, J. K. Barton, and A. H. Zewail, "Femtosecond dynamics of DNA-mediated electron transfer," Proc. Natl. Acad. Sci., Vol. 96, pp. 6014-6019, May 1999. https://doi.org/10.1073/pnas.96.11.6014
  12. M. A. O'Neill, H. C. Becker, C. Wan, J. K. Barton, and A. H. Zewail, "Ultrafast dynamics in DNA-mediated electron transfer: Base gating and the role of temperature," Angew. Chem., Vol. 115, No. 47, pp. 6076-6080, December 2003. https://doi.org/10.1002/ange.200352831
  13. H. Cohen, C. Nogues, R. Naaman, and D. Porath, "Direct measurement of electrical transport through single DNA molecules of complex sequence," Proc. Natl. Acad. Sci., Vol. 102, No. 33, pp. 11589-11593, August 2005. https://doi.org/10.1073/pnas.0505272102
  14. D. M. Ceres and J. K. Barton, "In situ scanning tunneling microscopy of DNA-modified gold surfaces: Bias and mismatch dependence," J. Am. Chem. Soc., Vol. 125, pp. 14964-14965, November 2003. https://doi.org/10.1021/ja0384476
  15. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, "Direct measurement of electrical transport through DNA molecules," Nature, Vol. 403, pp. 635-638, February 2000. https://doi.org/10.1038/35001029
  16. F. Menacher, M. Rubner, S. Berndl, and H. A. Wagenknecht, "Thiazole orange and Cy3: improvement of fluorescent DNA probes with use of short range electron transfer," J. Org. Chem., Vol. 73, pp. 4263-4266, April 2008. https://doi.org/10.1021/jo8004793
  17. B. Giese, J. Amaudrut, A. K. Köhler, M. Spormann, and S. Wessely, "Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling," Nature, Vol. 412, pp. 318-320, July 2001. https://doi.org/10.1038/35085542