• 제목/요약/키워드: Gold and titanium screw

검색결과 24건 처리시간 0.022초

Screw joint stability according to abutment screw materials

  • Jeong Yong-Tae;Chung Chae-Heon;Lee Heung-Tae
    • 대한치과보철학회지
    • /
    • 제39권3호
    • /
    • pp.297-305
    • /
    • 2001
  • Statement of problem. There have been previous studies about instability according to screw material by means of calculating preload in tightening screw or recording of the torque necessary to loosen screw after tightening screw. Purpose. The purpose of this study was to evaluate screw joint stability through the analysis of fitness at the mating thread surfaces between implant and screw after tightening screws made of different materials. Material and methods. In this study, screws were respectively used to secure a cemented abutment to a hexlock implant fixture; teflon coated titanium alloy screw and titanium alloy screw(Steri-Oss), gold-plated gold-palladium alloy screw and titanium alloy screw(Implant Innovation), gold screw and titanium screw(AVANA Dental Implant System). Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10minutes. All samples were cross sectioned with sandpaper and polished. Then samples were evaluated with an scanning electron microscope analysis. Results. In titanium alloy screw, irregular contact and relatively large gap was present at mating thread surface. Also in teflon-coated titanium screw, incomplete seating and only partially contact was present at the mating thread surface. In gold-plated gold-palladium alloy screw, relatively close and tight contact without the presence of large gap was present by existing of gold coating at the mating thread surfaces. In gold alloy screw, relatively small gap between the mating components was seen. Conclusions. This result suggested that gold plated gold-palladium alloy screw and gold alloy screw achieved a greater degree of contact at the mating thread surfaces compared to titanium alloy screw and teflon-coated titanium alloy screw.

  • PDF

A STUDY ON SURFACE OF VARIOUS ABUTMENT SCREWS

  • Park Chan-Ik;Chung Chae-Heon;Choi Han-Cheol
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.351-359
    • /
    • 2003
  • Statement of problem: Regardless of any restoration, most of case, we used in screw connection between abutment and implant. For this reason, implant screw loosening has been remained problem in restorative practices. Purpose: The purpose of this study was to compare surface of coated/plated screw with titanium and gold alloy screw and to evaluate physical property of coated/plated material after scratch test in FESEM investigation Material and methods: GoldTite, titanium screw provided by 3i (Implant Innovation, USA) and TorqTite, titanium screw by Steri-Oss (Nobel Biocare, USA) and gold screw, titanium screw by AVANA (Osstem Implant, korea) - were selected for this study. Each abutment screw surface was observed at 100 times, and then screw crest, root, and slope were done more detailed numerical value, at 1000 times with FESEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, micro-diamond scratch the surface of head region was made at constant load and then was observed central region and periphery of fine trace through 1000 times with FESEM. Results: The surface of GoldTite was smoother than that of other kinds of screw and had abundant ductility and malleability compared with titanium and gold screw. The scratch test also showed that teflon particles were exfoliated easily in screw coated with teflon. Titanium screw had a rough surface and low ductility. Conclusion: It was recommended that the clinical use of gold-plated screw would prevent a screw from loosening. CLINICAL IMPLICATIONS Clinical use of gold-plated screw would prevent a screw from loosening because it had abundant ductility and malleability compared with titanium and gold screw.

치과용 임플란트 나사의 풀림에 미치는 표면코팅 효과 (EFFECTS OF SURFACE COATING ON THE SCREW RELEASE OF DENTAL IMPLANT SCREW)

  • 구철인;정재헌;최한철
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.210-225
    • /
    • 2004
  • Statement of problem: Implant screw loosening has been remained problem in restorative practices. Surface treatment of screw plays a role of preventing screw from loosening in implant screw mechanism. Purpose : The purpose of this study was to investigate surface characteristics of TiN and ZrN film ion plated screw with titanium and gold alloy screw and to evaluate wear resistance, surface roughness, and film adhesion on screw surface using various instruments. Material and methods : GoldTite screws and titanium screws provided by 3i (Implant Innovation, USA) and TorqTite screws or titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, korea) were selected. Ion plating which is much superior to other surface modification techniques was carried out for gold screws and titanium screws using Ti and Zr coating materials with nitrogen gas. Ion nitrided surface of each abutment screw was observed with field emission scanning electron microscopy (FE-SEM, micro-diamond scratch tester, vickers hardness tester, and surface roughness tester. Results : 1) The surface of gold screw and GoldTite is more smooth than ones of other kinds of non coated screw. 2) The ZrN and TiN coated surface is the more smooth than ones of other kinds of screw. 3) The hardness of TiN and ZrN coated surface showed higher than that of non coated surface. 4) The TiN coated titanium screw and ZrN coated gold screw have a good wear resistance and adhesion on the surface. 5) The surface of ZrN coated screw showed low surface roughness compared with the surface of TiN coated screw. Conclusion : It is considered that the TiN and ZrN coated screw which would prevent a screw from loosening can be applicable to implant system and confirmed that TiN and ZrN film act as lubricant on surface of screw due to decrease of friction for recycled tightening and loosening.

임플랜트 고정체와 지대나사간의 부식특성에 관한 연구 (CORROSION CHARACTERISTICS BETWEEN IMPLANT FIXTURE AND ABUTMENT SCREW)

  • 기수진;권혁신;최한철
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.85-97
    • /
    • 2000
  • The purpose of this study was to compare the corrosion characteristics between implant fixture and two types of abutment screw ; gold screw, titanium screw. The anodic polarization behavior, the galvanic corrosion behavior, and the crevice corrosion behavior of prepared samples were investigated using potentiostat and scanning electron microscope. The results were as follows: 1. Anodic polarization behavior of samples; The primary passivation potential of implant fixture was -420mV, implant abutment was -560mV. titanium screw was -370mV and gold screw was -230mV. All samples were shown to have a high corrosion potential and good formation of passive film. The critical passive current density of gold screw was higher than that of other samples and the sample of gold screw showed a unstable passive film formation at passive region. 2. Galvanic corrosion behavior of samples; Contact current density between implant fixture and titanium screw showed $8.023{\times}10^{-5}C/cm^2$. Contact current density between implant fixture and gold screw showed $5.142{\times}10^{-5}C/cm^2$. 3. Crevice corrosion behavior of samples; The crevice corrosion resistance of sample using titanium screw was higher than that of sample using gold screw, and a severe corrosion morphologies were observed at the fixture-screw interface by the scanning electron microscope.

  • PDF

임플란트-지대주-나사의 적합에 관한 연구 (A STUDY ON THE FIT OF THE IMPLANT-ABUTMENT-SCREW INTERFACE)

  • 김낙형;정재헌;손미경;백대화
    • 대한치과보철학회지
    • /
    • 제41권4호
    • /
    • pp.503-518
    • /
    • 2003
  • Statement of problem : There have been previous studies about considerable variations in machining accuracy and consistency in the implant-abutment-screw interfaces. Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combinations on two randomly selected implants from each of four manufactures. Material and methods : In this study, screws were respectively used to secure a cemented abutment, to a hexlock implant fixture ; teflon coated titanium alloy screw(Torq-Tite) and titanium alloy screw in Steri--Oss system, gold-plated gold-palladium alloy screw(Gold-Tite) and titanium alloy screw in 3i system gild screw ana titanium screw in AVANA Dental Implant system, and titanium screws in Paragon System. The implants were perpendicularly mounted in polymethyl methacrylate autopolymerizing acrylic resin block(Orthodontic resin, Densply International Inc. USA) by use of dental surveyer. Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10 minutes. All samples were cross sectioned with grinder-polisher unit(Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc) Results : There were the largest gaps in the neck areas of screws in hexagonal extension implants which were examined in this study. The leading edge of the abutment screw thread (superior surface) was in contact with the implant body thread, and the majority of the contacting surfaces were localized to the middle portion of the mating threads. Considerable variation in the contacting surfaces was noted in the samples evaluated. Amounts of contact in the abutment screw thread were larger for assemblies with Gold-Tite screw, gold alloy screw. Torq-Tite screw than those with titanium screws. The findings of intimate contact between the screw and screw seat were seen in all samples, regardless of manufacturers. However, microgap between the head and lateral neck surface of the screw and the abutment could be dectected in all samples. The findings of intimate contact between the platform of the implant and the bottom of the abutment were consistent in all samples, regardless of manufacturers. However, microgaps between the lateral surface of external hex of the fixture and the abutment could be dectected in all samples. Conclusion : Considerable variations in machining accuracy and consistency were noted in the samples and the implant-abutment-screw interfaces were incomplete. From the results of this study, further development of the system will be required, including improvements in pattern design.

조임 회전력에 따른 치과 임플랜트 지대나사의 응력에 관한 연구 (STRESS OF DENTAL IMPLANT ABUTMENT SCREW BY THE TIGHTENING TORQUE)

  • 이원주;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제36권5호
    • /
    • pp.721-737
    • /
    • 1998
  • Abutment screw loosening of implant restorations is a common problem in the treatment of dental implant. The purpose of this study was to calculate stress and preload from the elongation measurements and to determine maximum tightening torque without plastic deformation of the screw. The length of each gold alloy UCLA screw was measured after tightening to the manufacturer's recommended torque of 32 N-cm. Similarity, titanium UCLA screws were measured after tightening to the manufacturer's recommended torque of 20 N-cm. Loosening torque was also measured after tightening to 32 N-cm torque for gold alloy abutment screws and 20 N-cm for titanium abutment screws. The results were as follows ; 1. There was a regressive relationship between screw elongation and tightening torque (gold alloy : $r^2=0.987$, titanium : $r^2=0.978$), and the mean preload calculated from elongation measurements was $501.11{\pm}26.85\;N$ (gold alloy) and $399.43{\pm}7.61\;N$ (titanium). 2. Stress calculated for the gold alloy and titanium screws at maximum recommended tightening torque was less than 60% of their respective yield strengths and with-in the elastic range. Maximum tightening torque without plastic deformation was 61 N-cm (gold alloy) and 39 N-cm (titanium). 3. For titanium screws, there was a significant difference between loosening after trial 1 and loosening after trials 2 to 5 (p<0.05). No statistically significant difference was seen in mean loosening torques between the first and subsequent trials for gold alloy screws.

  • PDF

A STUDY ON SURFACE ALTERATION OF IMPLANT SCREWS AFTER FUNCTION

  • Han, Myung-Ju;Chung, Chae-Heon;Choi, Han-Cheol
    • 대한치과보철학회지
    • /
    • 제40권3호
    • /
    • pp.275-286
    • /
    • 2002
  • Statement of problem. Surface alteration of the implant screws after function may be associated with mechanical failure. Theses metal fatigue appears to be the most common cause of structural failure. Purpose. The purpose of this study was to evaluate surface alteration of the implant screws after function through the examination of used and unused implant screws in SEM(scanning electron microscope). Materials and methods. In this study, abutment screws(Steri-oss, 3i), gold retaining screw(3i) and titanium retaining screw(3i) were retrieved from patients. New, unused abutment and retaining screws were prepared for control group. Each of the old, used screws was retrieved with a screwdriver. And retrieved implant complex of Steri-oss system was prepared for this study. Then, SEM investigation and EDS analysis of abutment and retaining screws were performed. And SEM investigation of cross-sectioned sample of retrieved implant complex was performed. Results. In the case of new, unused implant screws, as maunfactured circumferential grooves are regularly examined and screw thread are sharply remained. Before ultrasonic cleansing of old, used implant screw, a lot of accumulation and corrosion products were existed. After ultrasonic cleansing of old, used implant screws, circumferential grooves as examined before function were randomly deepened and scratches increased. Also, dull screw thread was examined. More surface alterations after function were examined in titanium screw than gold screw. And more surface alteration was examined when retrieved with driver than retrieved without driver. Conclusions. These surface alteration after function may result in the screw instability. Regularly cleansing and exchange of screws was recommended. We recommend the use of gold screw rather than titanium screw, and careful manipulation of the driver.

임플랜트 상부구조의 재료가 반복하중 후 나사풀림에 미치는 영향 (AN INFLUENCE OF ABUTMENT MATERIALS ON A SCREW-LOOSENING AFTER CYCLIC LOADING)

  • 이태식;한중석;양재호;이재봉;김성훈
    • 대한치과보철학회지
    • /
    • 제45권2호
    • /
    • pp.240-249
    • /
    • 2007
  • Statement of problem: A phenomenon of screw-loosening in implant abutment is frequently occurred in a single and multiple implant restoration. Purpose: This study was performed to evaluate an effect of abutment material on screw-loosening before and after a cyclic loading. In a single-tooth implant, different materials of abutment, Type III Gold alloy and Zirconium composite$(ZrO_2/Al_2O_3)$ were used. Material and method: The Gold alloy(Type III) and Zirconium composite$(ZrO_2/Al_2O_3)$ were used to make a superstructure of implant, the one of types of UCLA, Each group was constituted of 5 sample with a 30-degree offset angulated loading platform. The external hexagonal fixture was rigidly hel d in a special holding zig to ensure solid fixation without rotation during the tightening and a cyclic loading. A Titanium-alloy screw was used to connect and controlled to be tighten in 20Ncm torque by a digital torque gauge. A 20 times of consecutive closing/opening cycle were performed to evaluate the immediate torque loss. In 5 sample of each material group, an initial opening torque was recorded during 3 closing/opening cycle, then 2Hz, 200N, 1,000,000 cyclic loadings were performed, then a opening torque was evaluated. Result & Conclusion: 1. In this limited study, titanium alloy screw tightened in 20Ncm, a cold-welding phenomen on was not observed during the 20 times of closing/opening cycle(p=0.11, p=0.18). 2. In titanium alloy abutment screw, repeated opening and closing of the screw caused to progressive decrease of opening torque(p=0.014). 3. The difference in preload of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant(p=0.78). 4. The difference in torque loss of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant after 2Hz,200N, 1,000,000 cyclic loading(p=0.92). 5. In titanium alloy abutment screw tightened by 20Ncm, the screw loosening was not significant on each group after 2Hz, 200Ncm, 1,000,000 cyclic loading(p=0.59).

수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구 (A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW)

  • 김진만;한중석;이선형;양재호;이재봉;김영수
    • 대한치과보철학회지
    • /
    • 제41권4호
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.

호환 가능한 수종의 치과용 임플란트 나사의 풀림토크값에 대한 연구 (Detorque Values of Various Compatible Dental Implant Screws)

  • 이주리;이동환;황재웅;최정한
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.273-283
    • /
    • 2010
  • 이 연구는 다수의 임플란트에 의해 지지되는 보철물과 단일 임플란트 보철물에서 호환 가능한 세 가지 종류의 나사의 풀림토크값을 측정하여 나사 결합부 안정성에 차이가 있는지를 알아보고자 하였다. 이를 위해, 네 개의 외부 육각 임플란트에 직접 연결되는 임플란트 상부구조물을, 아크릴릭 레진을 이용한 연결인상법으로 얻은 총 6개의 실험모형에 20 Ncm의 힘으로 조인 후, 각 나사의 풀림토크값을 총 2회 측정하였다. 사용한 지대주 나사는 토크타이트(TorqTite), 골드타이트(Gold-Tite), 그리고, 티타늄(Titanium) 나사였다. 또한, 단일 임플란트 수복의 경우 를 가정하여 총 5개의 실험모형 상의 2개의 임플란트에, 한 개의 지대주(GoldAdapt Engaging)를 다시 세 종류의 나사로 연결한 후, 각 나사의 풀림토크값을 총 2회 측정하였다. 나사의 풀림토크값의 비교를 위한 통계적 분석을 혼합모형(mixed model)을 이용하여 유의수준 .05에서 실시한 결과, 다수 임플란트 지지 상부구조물의 경우, 나사의 종류에 따른 풀림토크값은 통계적으로 유의성 있는 차이를 보이지 않았다(p>0.05). 그러나 단일 임플란트 지대주의 경우에는 통계적으로 유의성 있는 차이를 보였으며(p=0.0175), 토크타이트 나사(p=0.0462)와 티타늄 나사(p=0.0348)는 각각, 골드타이트 나사보다 유의성 있게 큰 풀림토크값을 보였으나, 두 나사 간에는 유의성 있는 차이가 없었다(p>0.05). 이상의 연구 결과로 보아, 서로 다른 종류의 나사가 나사 결합부의 초기 안정성에 미치는 영향은, 단일 임플란트 보철물의 경우에서와는 달리, 다수의 임플란트에 의해 지지되는 보철물의 경우에는 미미하다고 할 수 있다.