• 제목/요약/키워드: Gneiss

검색결과 517건 처리시간 0.028초

전남(全南) 보성지역(寶城地域) 보덕광산(寶德鑛山)의 심부(深部) 중온형(中溫型) 금(金)-은(銀) 광화작용(鑛化作用): 유체포유물(流體包有物) 및 안정동위원소(安定同位元素) 연구(硏究) (Mesothermal Gold-Silver Mineralization at the Bodeok Mine, Boseong Area : A Fluid Inclusion and Stable Isotope Study)

  • 소칠섭;윤성택;김세현;염승준;허철호;최선규
    • 자원환경지질
    • /
    • 제26권4호
    • /
    • pp.433-444
    • /
    • 1993
  • 전남(全南) 보성(寶城)지역 보덕(寶德) 광산의 에렉트럼 (은(銀)함량=32~73 atom. %)-황화광물 광화작용(鑛化作用)은 선캠브리아기(紀) 편마암(片麻岩)내의 단층(斷層) 열극을 충진한 석영맥(石英脈)으로 산출된다. 석영맥은 광물조성이 단순한 괴상(塊狀)이며, 구조(構造)적으로 2회에 걸쳐 형성되었다. 열수변질대(熱水變質帶) 견운모(絹雲母)에 대한 K-Ar 연령은 $155.9{\pm}2.3$ Ma로서 광화작용(鑛化作用)이 후기 쥬라기(紀)에 일어났음을 지시한다. 유체포유물(流體包有物) 연구에 의하면, 광화작용(鑛化作用)은 다양한 $CO_2$ 함량 ($X_{CO_2}=0.0{\sim}0.7$)과 저염도(低鹽度) (0.0~7.4 wt. % NaCl 상당농도(相當濃度))를 갖는 $H_2O-CO_2$계(系) 유체(流體)로부터 $200^{\circ}{\sim}370^{\circ}C$의 온도(溫度)범위에서 진행되었다. 광화유체(鑛化流體)의 불혼화(不混和) ($CO_2$비등(沸騰)) 증거는 광화용(鑛化用)시의 압력(壓力)이 약 1 kbar에 이르렀음을 지시한다. 금(金)-은(銀) 침전(沈澱)은 base-metal계(系) 황화광물(黃化鑛物) 보다는 후기, 약 $250^{\circ}C$ 근처에서 진행되었고, 유체(流體) 불혼화(不混和)에 따라 황화광물(黃化鑛物) 침전(沈澱) 및 $H_2S$ 일탈이 야기되면서 주로 냉각(冷却) 및 유황분압(硫黃分壓)의 감소에 기인하였다. 광화유체(鑛化流體)의 유황동위원소(硫黃同位元素) 조성 (${\delta}^{34}S_{{\Sigma}S}=1.7{\sim}3.3$‰)은 유황(硫黃)의 화성(火成)기원을 나타낸다. 한편, 광화유체(鑛化流體)의 산소(酸素)-수소(水素) 동위원소(同位元素) 조성 (${\delta}^{18}O_{water}=4.8{\sim}7.2$‰ ; ${\delta}D_{water}=-73{\sim}-76$‰)은, 보덕(寶德)광산의 심부(深部) 중온형(中溫型) 함금(含金) 광화유체(鑛化流體)는 동위원소적(同位元素的)으로 진화된 $H_2O-rich$ 순환천수(循環天水)와 심부(深部) magma 기원의 $H_2O-CO_2$ 유체(流體)와의 혼합물(混合物)로부터 기원했음을 지시한다.

  • PDF

용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성 (Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area)

  • 정찬호;양재하;이용천;이유진;최현영;김문수;김현구;김태승;조병욱
    • 지질공학
    • /
    • 제26권2호
    • /
    • pp.261-276
    • /
    • 2016
  • 본 연구에서는 용인지역 ○○마을 지하수내 우라늄 및 라돈-222와 같은 자연방사성물질의 산출과 이와 관련된 수리지화학 특성 및 지질과의 상관성을 알아보고자 하였다. 이를 위하여 지하수 19점, 지표수 5점을 2회에 걸쳐 채취하였다. 연구결과 지하수의 pH는 5.81~7.79의 범위를 보이며, 지하수의 화학적 유형은 Ca(Na)-HCO3에서 Ca(Na)-NO3(Cl)-HCO3 유형에 걸쳐 분포한다. 우라늄과 라돈-222의 함량은 각각 0.06~411 μg/L의 범위와 5.56~903 Bq/L의 범위를 보인다. 마을 공용음용수로 사용되었던 암반지하수 2점은 우라늄과 라돈-222의 함량이 미국 EPA 권고치를 초과하였으며, 마을 내 생활용수로 사용하는 지하수중 우라늄과 라돈-222가 각각 3점과 12점에서 미국 EPA 권고치를 초과하였다. 초과한 지하수의 분포지역 지질은 중생대 쥬라기의 편마암상 각섬석-흑운모화강암이다. 우라늄과 라돈의 고함량 산출의 상관성을 보인 지하수는 마을 음용수로 사용되어온 심부지하수 2점에 국한되며, 다른 지하수에서는 특별한 상관성을 보이지 않는다. 지하수내 고함량 우라늄의 영향 범위는 지하수공 주변 수십 m 이내로 한정되는 것으로 보이며, 불활성 기체인 라돈의 고함량 범위는 보다 넓은 범위이므로 우라늄과 기원이 서로 상이하거나, 만약 동일한 기원이라면 암반의 단열대 등을 통한 확산이 비교적 넓게 진행된 것으로 보아야 할 것이다. 지표방사능 세기와 우라늄의 산출의 상관성도 대체로 일치함을 보여, 주변 최대 200 m 정도까지 고함량 우라늄의 영향범위로 추정된다. 암석 내 우라늄과 토륨은 토라이트와 모나자이트 광물에서 높은 검출을 보인다.

포천 - 기산리 일대에 분포하는 쥬라기 대보화강암류의 암석 및 암석화학 (Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area)

  • 윤현수;홍세선;이윤수
    • 암석학회지
    • /
    • 제11권1호
    • /
    • pp.1-16
    • /
    • 2002
  • 1/5만 포천-기산리도폭에 넓게 분포하는 쥬라기의 대보화강암류는 선캠브리아기의 편마암 복합체를 관입한다. 이들은 모우드 분석결과 거의가 몬조화강암에 해당하며, 구성광물특성상 흑운모화강암(Gb), 석류석흑운모화강암(Ggb) 그리고 복운모화강암(Gtm)으로 구분된다. 주변지역의 야외조사와 K-Ar 운모류 연령해석에 의하면 Ggb가 Gb를 관입하였으며 Gtm은 가장 후기로 해석된다. 연구대상인 Gb와 Ggb는 서브알카린과 캘크알칼린 계열의 산성암류이다. $SiO_2$ 증가에 따라 주 원소의 대부분이 완만한 부의 경향을 뚜렷히 가지나, $TiO_2$, MgO 및 CaO등은 두 개의 다소 다른 선상분포를 이룬다. 이와 더불어 선상의 분포경향을 이룬 AMF, Sr대 Ba 그리고 Rb-Ba-Sr 관계 등으로 미루어, 이들은 동일마그마에서 기원되었으며 Ggb가 Gb보다 분화후기의 산물로 해석된다. Sr 대 CaO와 Sr 대 $K_2O$는 모두 정의 관계를 이루나, Sr이 알칼리장석보다 사장석의 분별결정작용에 보다 더 관여한 경향을 이룬다. 콘드라이트 값으로 표준화한 변화도에서 이들은 LREE에서 HREE로 갈수록 점진적으로 뚜렷이 결핍된다. 그러나 Ggb의 한 개 시료는 HREE가 점이적 증가경향을 이루며, 이는 석류석의 수반에 의한 것으로 해석된다. Eu 부의 이상으로 미루어 Gb에 비해 Ggb에서 사장석의 분별결정작용이 매우 강하게 일어난 것으로 보인다. (Qz+Af) 대 Op의 모우드 상관도에서 Gb는 거의가 자철석 계열에, Ggb는 모두 티탄철석 계열에 속한다. 모우드 분석과 대자율 역산에서 Gb와 Ggb의 대자율은 각각 339.3 ${\mu}SI$와 2.3 ${\mu}SI$로써 뚜렷이 구분되며, 이는 각각 자철석과 흑운모가 주도하는 것으로 분석된다 Gb와 Ggb의 $SiO_2$는 각각 높은 함량과 좁은 범위값을, $K_2O/Na_2O$는 각각 1.29와 1.27을, 그리고 A/CNK 몰비는 거의가 1.05 이상의 값을 가진다. 그 밖에 ACF도와 대자율값에서도 모두 S-형에 속하는 암석성인적 특성을 보인다.

마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화 (The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems)

  • 오창환;이승환;이보영
    • 암석학회지
    • /
    • 제26권3호
    • /
    • pp.201-219
    • /
    • 2017
  • 마이산을 포함한 진안분지는 영남육괴 북쪽 경계 중앙부에 위치하고 있으며 이 지역의 기반암은 고원생대 편마암과 이를 관입한 중생대 화강암으로 백악기 이전에 지표로 노출되었다. 진안분지는 백악기에 영동-광주 단층대를 따라 일어난 좌수향 주향이동단층에 의해 형성된 인리형 분지이며 마이산은 진안분지 내의 경사가 급했던 분지 동쪽 경계부에 퇴적된 역암으로 구성된 산이다. 마이산 봉우리는 말 귀의 형상을 보이며 역암 절벽에 타포니가 발달한 특이한 지형을 보여주고 있다. 진안분지를 형성시킨 단층은 지하 깊은 곳까지 연결됨으로서 200 km 깊이에서 형성된 마그마가 지표로 분출하여 진안분지 내와 그 주변에 활발한 화산 활동을 일으켰다. 그 결과 마이산 주변에는 화산폭발에 의해 형성된 화산쇄설암으로 구성된 천반산, 화산분출시 마그마가 관입한 암경으로 구성된 구봉산 그리고 화산 분출시 분출되어 흐른 용암에 의해 형성된 운일암 반일암등이 특이 지형을 형성하며 나타난다. 그리고 진안분지와 주변 화산암이 형성된 이후 진안분지와 그 주변 지역이 융기하여 마이산을 포함한 주변 명산들을 형성하였다. 융기 시기는 정확히 알 수는 없지만 대략 69-38 Ma경으로 추측된다. 이때 추가령에서 무주와 진안을 지나 함평으로 연결되는 노령산맥이 형성되었을 것으로 추정되며, 이로 인해 금강과 섬진강 수계가 나뉘어지고 갈라진 수계에 의해 쉬리의 종이 분화되었다. 또한 북북서 방향으로 발달한 운장산에 의해 금강과 만경-동진강 수계가 나뉘어졌다. 이로 인해 마이산과 그 주변 지역에는 다양한 생태계가 조성되었으며 동시에 마이산에는 특이한 암상과 관련된 다양한 문화, 역사 자원이 존재한다. 따라서 마이산과 주변 지역은 지질유산을 중심으로 생태, 문화, 역사가 잘 어우러진 지질 관광이 성공적으로 개발될 수 있는 지역으로 국가지질공원 및 세계 지질공원으로서의 가능성이 높다.

오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미 (The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula)

  • 김태성;오창환;김정민
    • 암석학회지
    • /
    • 제20권2호
    • /
    • pp.77-98
    • /
    • 2011
  • 경기육괴 동부에 위치하는 오대산 지역에서는 맨거라이트와 반려암으로 구성된 화성암체가 원생대 초기에 형성된 혼성편마암을 관입하고 있다. 맨거라이트는 사방휘석, 단사휘석, 각섬석, 흑운모, 사장석, 퍼어사이틱 K-장석, 석영으로 이루어져 있으며 반려암의 광물군은 맨거라이트와 유사하나 반려암내에서는 각섬석이 사방휘석 주변에 적은 양으로 나타나며 퍼어사이틱 K-장석이 나타나지 않는다. 맨거라이트내에 반려암이 포획암 형태나 불규칙한 형태로 나타나며 두 암석의 경계가 불분명하다. 반려암질 포획암내에는 맨거라이트에서 볼 수 있는 퍼어사이틱 K-장석을 포함한 우백질부가 렌즈상으로 포함되어 있다. 이러한 것들은 두 개의 화성암이 액체상태에서 서로 혼합되었음을 지시한다. SHRIMP 저어콘 연대 측정결과 맨거라이트와 반려암으후부터 각각 $234{\pm}1.2$ Ma와 $231{\pm}1.3$ Ma의 트라이아스기 중기에 해당하는 연령을 얻었다. 이 연령은 홍성(226~233 Ma)과 양평 (227~231 Ma)지역의 트라이아스기 대륙충돌 후 화성암들의 연령과 유사하다. 맨거라이트와 반려암은 고함량 Ba-Sr 화성암(high Ba-Sr granite)이고 쇼쇼나이틱(shoshonitic) 하며, 대륙충돌 후 판 내부 환경에서 만들어졌다. 한편, 이 암석들은 대부분 경희토류와 친석원소가 부화되어 있으며 Nb-Ta-P-Ti 부(-) 이상을 보이는 섭입대 화성암의 특정도 보여준다. 위의 지화학적 특징들은 오대산 맨거라이트와 반려암은 대륙충돌 이전에 있었던 섭입시기에 지각물질에 의해 부화된 맨틀이 대륙충돌 후 분리된 대륙판과 해양판 사이 공간으로 유입된 연약권의 열에 의해 부분용융이 되면서 만들어졌음을 지시한다 오대산 지역의 맨거라이트와 반려암을 포함한 경기육괴와 임진강대 북부에 나타나는 약 230Ma의 대륙충돌 후 화성암의 분포는 이 시기에 일어난 한반도내 북중국판과 남중국판 충돌의 경계가 홍성 지역을 지나 양평-오대산지역과 옥천변성대 사이 지역으로 연결될 것임을 강하게 시사한다.

간척지 온실 기초의 침하량 검토 (Settlement Instrumentation of Greenhouse Foundation in Reclaimed Land)

  • 최만권;윤성욱;유인호;이종원;이시영;윤용철
    • 생물환경조절학회지
    • /
    • 제24권2호
    • /
    • pp.85-92
    • /
    • 2015
  • 본 연구에서는 간척지 내에 온실을 시공할 경우, 온실 설계의 기초자료로 활용하기 위하여 최근 나무말뚝 기초를 사용하여 완공한 계화도 간척지의 1-2W형 온실을 대상으로 온실기초의 침하량을 계측하고 검토하였다. 그 결과는 다음과 같다. 지반조사 결과, 기반암인 연암층은 확인되지 않았으며 부지 조성 당시 매립한 것으로 추정되는 매립층과 그 하부에 퇴적층이 존재하는 것으로 조사되었다. 그리고 매립층과 퇴적층 하부에 풍화대가 존재하는 것으로 조사되었다. 전체 지반층의 토성은 시추공에 관계없이 주로 점토 섞인 모래, 실트질 모래, 실트질 점토 및 화강편마암 순으로 구성되어 있었다. 지하수위도 시추공에 관계없이 지반에서 0.3m 아래에 있는 것으로 나타났다. 온실기초 및 나무말뚝의 침하량은 전체적으로 볼 때, 온실 내 외부나 계측지점(채널)에 관계없이 침하량에는 다소 차이가 있지만, 시간의 경과와 함께 침하량이 증가하고 있는 것으로 나타났다. 그리고 온실 내부 기둥의 경우, CH-2는 좀 예외적이긴 하지만, 온실 측벽(방풍벽 측)에 있는 지점의 데이터가 상대적으로 큰 진폭으로 흔들리는 것은 알 수 있었다. 또한 특정 시기에 침하량이 상대적으로 크게 증가한 후, 어느 정도 침하량이 회복 되는 현상을 볼 수 있었다. 이와 같은 현상들을 포함하여 CH-1을 제외하고 현 시점에서 온실 내 외부 전체의 지점별(CH-2~CH-10) 침하량은 1.0~7.5mm 정도의 범위에 있는 것으로 나타났다. 회귀 분석한 결과 결정계수는 지점별로 0.6362~0.9340까지의 범위로서 상관관계가 높은 것으로 나타났다. 그리고 온실외부의 경우는 0.6046~0.8822로서 온실내부 보다는 다소 낮지만, 상관관계가 있는 것으로 나타났다.

삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화 (Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea)

  • 정원석;나기창
    • 암석학회지
    • /
    • 제17권1호
    • /
    • pp.16-35
    • /
    • 2008
  • 삼척 원덕읍에 분포하는 영남육괴 변성퇴적암류에 대한 변성작용을 판단하고 이에 따른 우백질 화강암의 기원과 진화과정을 규명하였다. 변성퇴적암류는 광물 조합에 따라 크게 석류석대와 규선석대로 나눌 수 있다. 규산질 퇴적암의 특징을 나타내는 변성퇴적암류는 암석성인격자를 바탕으로 석류석대는 $4.8{\sim}5.8\;kbar$, $740{\sim}800^{\circ}C$, 규선석대는 2.5-4.5 kbar, $640-760^{\circ}C$의 변성작용을 받았다. 이 지역에 분포하는 우백질 화강편마암류(임원 우백질화강암)는 A/CNK=1.31-1.93이고 DF(discriminant factor)>0인 과알루미늄질 화강암이다. 따라서 이는 S-type의 화강암류에 속하며 이의 기원은 주변의 변성퇴적암류이다. 주원소 및 미량원소 성분들은 우백질 화강암이 충돌대 또는 화산호 화강암 같은 대륙의 충돌 환경과 관련성을 나타낸다 우백질 화강암의 Rb/Sr의 비율(1.8-22.9)은 Sr/Ba 비율(0.21-0.79)에 비해 크기 때문에 백운모의 탈수 용융작용으로 우백질 마그마가 형성되었다. 우백질 화강암의 REE 함량은 전반적으로 변성퇴적암류보다 낮은 LREE 함량과 비슷한 HREE 함량을 갖는다. 이러한 형성 과정을 확인하기 위해 일부 변성퇴적암 및 우백질화강암 시료의 광물 함량비율과 기존 연구의 유문암 및 미그마타이트에 들어 있는 광물의 REE 함량을 이용하여 모델링을 수행했다. 이에 따르면 일부 우백질 화강암의 HREE를 저어콘이 조절했을 가능성도 보여주나, 대부분의 우백질 화강암의 LREE 조절자는 모나자이트이고 HREE 조절자는 석류석으로 판단된다 변성퇴적암에서 부수광물들 모나자이트 및 저어콘 같은 부수광물들은 주로 흑운모의 포유물로 확인되기 때문에 변성퇴적암으로부터 형성된 우백질 마그마는 주로 백운모의 붕괴 작용으로 형성된 것이다. 콘드라이트로 표준화한 REE 패턴에서 우백질 화강암은 음의 Eu 이상치를 갖는 것(Type I)과 양의 이상치를 갖는 것(Type II)로 구분할 수 있다. 우백질 화강암은 변성퇴적암류에 비해 낮은 Eu 함량을 갖으며 REE 형태와 관계없이 비슷한 Eu 함량을 갖는다. 이는 REE 모델링에서 변성퇴적암과 우백질 화강암의 장석 성분과 관련이 깊은 것으로 나타난다. 또한 주원소 ($K_2O$ and $Na_2O$) 및 미량원소(Eu, Rb, Sr, Ba) 역시 강한 알칼리 장석의 분화작용을 지시한다. 결론적으로 본 연구지역에 분포하는 우백질 화강암은 대륙충돌 환경에서 변성퇴적암류가 고온변성작용 중에 발생한 백운모 탈수 용융작용으로 발생된 용융체가 이후 분화과정을 겪어 산출된 것으로 판단된다.

대화 Mo-W 열수 맥상 광상의 유체 진화 특성 (Evolution of Hydrothermal Fluids at Daehwa Mo-W Deposit)

  • 조진희;최상훈
    • 자원환경지질
    • /
    • 제46권1호
    • /
    • pp.11-19
    • /
    • 2013
  • 대화광상은 경기육괴의 편마암류와 화강암류에 발달한 열극을 충진 발달한 함 Mo-W 열수 맥상 광상이다. 대화광상의 몰리브덴-텅스텐 광화작용과 관련된 주요 수반광물인 석영에서 관찰되는 유체포유물은 상온 ($20^{\circ}C$) 에서의 상(phase) 관계와 냉각 및 가열 실험을 통해 측정된 균일화 온도와 상변화를 기초로 하여 3가지 주요 유형 (Type I, 액상이 우세한 $H_2O$-NaCl 유형; Type II, 기상이 우세한 $H_2O$-NaCl 유형; Type III; $CO_2-H_2O$-NaCl 유형) 으로 분류된다. 또한, 함 $CO_2$ Type III 유체포유물은 $CO_2$ 균일화 및 최종 균일화 특성을 바탕으로 4가지 유형 (IIIa, IIIb, IIIc, IIId)으로 세분된다. 대화광상 Type I 유체포유물의 균일화 온도는 약 $374^{\circ}C{\sim}161^{\circ}C$로 넓은 범위를 보여주며, 염농도 역시 약 13.6~0.5 equiv. wt. % NaCl의 넓은 조성 범위를 보인다. Type III 유체포유물 냉각 실험 시 측정된 $CO_2$ 상의 용융 온도는 $-57.4{\sim}-56.6^{\circ}C$이며, $CO_2$ 균일화 온도는 $29.0{\sim}30.8^{\circ}C$이다. 또한 $CO_2$ clathrate 용융 온도는 $7.3{\sim}9.5^{\circ}C$로 염농도는 5.2~1.0 equiv. wt. % NaCl이고, 최종 균일화 온도는 $303^{\circ}C{\sim}251^{\circ}C$로 비교적 좁은 범위로 확인되었다. $CO_2-H_2O$-NaCl계 (Type III) 유체포유물의 경우 온도가 감소함에 따라 염농도 역시 감소하는데, 이는 높은 염농도를 가진 $H_2O$-NaCl계 유체와 낮은 염농도를 가진 $CO_2-H_2O$-NaCl계 유체의 불혼화에 의해 열수의 진화가 이루어졌음을 의미한다. Type I 유체포유물은 온도 감소와 염농도 사이의 뚜렷한 변화가 인지되지 않았다. 따라서, 대화 열수계의 함 몰리브덴-중석 광화작용은 $400^{\circ}C$, 5.2 equiv. wt.% NaCl의 염농도를 가진 광화유체로부터 시작되어, 약 $350^{\circ}C$ 부근에서 유체의 불혼화 용융에 의해 진행되었다. 이후 대화 열수계에 유입된 상대적으로 낮은 온도와 염농도를 갖는 유체 (천수 또는 상대적으로 높은 물/암석 비를 갖는 열수유체) 의 혼입 작용에 의해 후기 천금속 광화작용이 야기되었다.

국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 발생되는 슬러지의 광물.물리화학적 특성 (Mineralogical and Physico-chemical Properties of Sludge Produced During Artificial Sand Processing)

  • 유장한;김용욱
    • 한국광물학회지
    • /
    • 제20권4호
    • /
    • pp.303-311
    • /
    • 2007
  • 국내 모래수요에서 인공쇄석사의 점유율은 30% 이상이며 지속적인 증가추세에 있다. 인공쇄석사는 주로 화강암 및 편마암류를 원암으로 이용하며, 공정 중에 생기는 슬러지(63마이크론 이하입자)는 침전제를 이용하여 분리되며, 중량대비 15% 내외가 포함된다. 슬러지 구성광물은 석영, 장석, 운모류와 함께 고령토, 녹니석, 질석, 스멕타이트 및 방해석도 간혹 포함된다. 쥬라기 화강암류에서 발생되는 슬러지는 대체적으로 백악기 화강암류에 비해서 더 많은 고령토 및 스멕타이트를 포함한다. 반면, 선캠브리아기 시료는 고령토 및 스멕타이트가 확인되지 않는다. 화학조성에 있어서도 화강암류와 슬러지의 사이에 명확한 차이를 나타낸다. 주요 10성분 중에서 $SiO_2,\;Na_2O$$K_2O$를 제외한 나머지 성분들은 슬러지에서 훨씬 높은 함량을 나타낸다. 슬러지에서 $SiO_2$의 감소는 점토입도에서의 석영함량감소에 기인하며, $Na_2O 감소는 알바이트에 비해서 Ca사장석이 풍화에 약하기 때문이며, $K_2O$는 대체적으로 변화가 미약하다. 슬러지에 대한 입도분석에 의하면, 토양조직 분류상 사질양토에 해당한다. 투수율 측정에 의하면 투수계수가 높으며, 그 원인은 실트 및 점토입자가 다소 풍부하기 때문이다. 현재 우리나라에서 폐기되는 슬러지는 불투수성이 높아 산업폐기물 중의 환경오염물로 분류되며, 쇄석사의 회수율을 저하시키므로 원암선택시 풍화를 덜 받은 화강암류를 선택할 필요가 있다.

광주지역 하상퇴적물에 대한 지질집단별 지구화학적 연구 (Geochemical Study on Geological Groups of Stream Sediments in the Gwangju Area)

  • 김종균;박영석
    • 자원환경지질
    • /
    • 제38권4호
    • /
    • pp.481-492
    • /
    • 2005
  • 이 연구에서는 광주지역 하상퇴적물에 대한 지질집단별 지구화학적 특성에 대해 규명 하고자 한다. 이를 위해 물이 흐르고 있는 1차 수계를 대상으로 하상퇴적물시료 104개를 채취하였고, 실험실에서 자연건조 시켰다. 화학분석을 위한 시료는 알루미나 몰타르를 이용하여 200메쉬 이하로 분쇄하였고, XRF ICP-AES, NAA분석을 실시하였다. 연구지역 하상퇴적물에 대해, 지질집단별 지구화학적 특성 비교와 기존 암석에 대한 연구에서 얻어진 암석화학적인 특성과의 비교를 위해, 선캠브리아기 화강편마암 지역, 쥬라기 화강암 지역, 백악기 화순안산암 지역으로 분리하였다 광주지역 하상퇴적물의 주성분원소 함량은 $SiO_2\;51.89\~70.63\;wt.\%,\;Al_2O-3\;12.91\~21.95\;wt.\%,\;Fe_2O_3\;3.22\~9.89\;wt.\%,\;K_2O\;1.85\~4.49\;wt.\%,\;MgO\;0.68\~2.90\;wt.\%,\;Na_2O\;0.48\~2.34\;wt.\%,\;CaO\;0.42\~6.72\;wt.\%,\;TiO_2\;0.53\~l.32\;wt.\%,\;P_2O_5\;0.06~0.51\;wt.\%\;and\;MnO\;0.05\~0.69\;wt.\%.$이다. 하상퇴적물과 암석에 대한 AMF 삼각도에서, 암석은 칼크-알칼리계열에 도시되는데 비하여, 하상퇴적물은 솔레아이트 계열과 칼크-알칼리계열의 경계부위에 도시된다. 이는 $Fe_2O_3$ 함량이 암석에서보다 하상퇴적물에 더 많이 함유되어 있는 것과 관련이 있는 것으로 보인다. $SiO_2$에 대한 $K_2O+Na_2O$의 비교그림에서, 하상퇴적물은 암석에서와 같이 subalkaline 계열에 점시된다. 하상퇴적물의 미량성분원소 및 희토류 원소 함량은 $Ba 590\~2170ppm$, Be$1\~2.4$ppm, Cu $13\~179ppm$, Nb $20\~34ppm$, Ni$10\~50ppm$, Pb $17\~30$ppm, Sr $70\~1025$ ppm, V$42\~135$ ppm, Zr$45\~171$ ppm, Li$19\~77$ppm, Co$4.3\~19.3$ppm, Cr$28\~131$ppm, Cs$3.1\~17.6$ ppm, Hf $5\~27.6$ ppm, Rb $388\~202$ ppm, Sb$0.2\~l.2$ ppm, Sc$6.4\~17$ ppm, Zn $47\~389$ ppm, Pa $8.8\~68.8$ ppm, Ce$62\~272$ppm, Eu$1\~2.7$ppm and Yb$0.9\~6$ppm의 범위를 보인다.