DOI QR코드

DOI QR Code

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula

오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미

  • Kim, Tae-Sung (Department of Earth and Environmental Sciences and The Earth and Environmental Science System Research Center Chonbuk National University) ;
  • Oh, Chang-Whan (Department of Earth and Environmental Sciences and The Earth and Environmental Science System Research Center Chonbuk National University) ;
  • Kim, Jeong-Min (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
  • 김태성 (전북대학교 지구환경과학과, 전북대 지구환경시스템 연구소) ;
  • 오창환 (전북대학교 지구환경과학과, 전북대 지구환경시스템 연구소) ;
  • 김정민 (한국기초과학지원연구원)
  • Received : 2010.12.30
  • Accepted : 2011.04.20
  • Published : 2011.06.30

Abstract

The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.

경기육괴 동부에 위치하는 오대산 지역에서는 맨거라이트와 반려암으로 구성된 화성암체가 원생대 초기에 형성된 혼성편마암을 관입하고 있다. 맨거라이트는 사방휘석, 단사휘석, 각섬석, 흑운모, 사장석, 퍼어사이틱 K-장석, 석영으로 이루어져 있으며 반려암의 광물군은 맨거라이트와 유사하나 반려암내에서는 각섬석이 사방휘석 주변에 적은 양으로 나타나며 퍼어사이틱 K-장석이 나타나지 않는다. 맨거라이트내에 반려암이 포획암 형태나 불규칙한 형태로 나타나며 두 암석의 경계가 불분명하다. 반려암질 포획암내에는 맨거라이트에서 볼 수 있는 퍼어사이틱 K-장석을 포함한 우백질부가 렌즈상으로 포함되어 있다. 이러한 것들은 두 개의 화성암이 액체상태에서 서로 혼합되었음을 지시한다. SHRIMP 저어콘 연대 측정결과 맨거라이트와 반려암으후부터 각각 $234{\pm}1.2$ Ma와 $231{\pm}1.3$ Ma의 트라이아스기 중기에 해당하는 연령을 얻었다. 이 연령은 홍성(226~233 Ma)과 양평 (227~231 Ma)지역의 트라이아스기 대륙충돌 후 화성암들의 연령과 유사하다. 맨거라이트와 반려암은 고함량 Ba-Sr 화성암(high Ba-Sr granite)이고 쇼쇼나이틱(shoshonitic) 하며, 대륙충돌 후 판 내부 환경에서 만들어졌다. 한편, 이 암석들은 대부분 경희토류와 친석원소가 부화되어 있으며 Nb-Ta-P-Ti 부(-) 이상을 보이는 섭입대 화성암의 특정도 보여준다. 위의 지화학적 특징들은 오대산 맨거라이트와 반려암은 대륙충돌 이전에 있었던 섭입시기에 지각물질에 의해 부화된 맨틀이 대륙충돌 후 분리된 대륙판과 해양판 사이 공간으로 유입된 연약권의 열에 의해 부분용융이 되면서 만들어졌음을 지시한다 오대산 지역의 맨거라이트와 반려암을 포함한 경기육괴와 임진강대 북부에 나타나는 약 230Ma의 대륙충돌 후 화성암의 분포는 이 시기에 일어난 한반도내 북중국판과 남중국판 충돌의 경계가 홍성 지역을 지나 양평-오대산지역과 옥천변성대 사이 지역으로 연결될 것임을 강하게 시사한다.

Keywords

References

  1. 권용완, 1996, 강원도 설악산-오대산일대 변성암복합체의 변성과정과 변성환경에 관한 연구. 고려대학교 박사학위논문. 163p.
  2. 권용완, 김형식, 오창환, 1997, 경기육괴 북동부지역에 분포하는 오대산 편마암 복합체의 다변성작용. 암석학회지, 6, 226-243.
  3. 권용완, 1998, 오대산편마암복합체내에 산출되는 앰피볼라이트의 지화학적 특성과 변성작용. 암석학회지, 7, 111-131.
  4. 김봉균, 지정만, 이돈영, 소칠섭, 1975, 한국지질도(1:50,000), 현리 지질도폭 및 설명서 국립지질광물연구소, 19p.
  5. 김옥준, 1971, 남한의 신기 화강암류의 관입 시기와 지간 변동. 광산지질, 4, 1-9.
  6. 김옥준, 1973, 경기육괴 북서부의 변성암 복합체의 층서와 지질구조, 광산지질, 6, 201-218.
  7. 김용준, 조등룡, 이창신, 1998, 한반도 남서부 남원 일대에 분포하는 A형 대강 화강암의 암석학, 지화학 및 지구조적 의미. 자원환경지질학회지, 31, 399-413.
  8. 김종선, 이준동, 2000, 거제도 화강암질암의 지화학적 특성에 의한 마그마 불균질혼합 증거. 지질학회지, 36, 19-38.
  9. 박영록, 2009, 춘천 후동리 일대에 분포하는 중기 트라이아스기 관입암의 부화된 지화학 및 Sr-Nd 동위원소 특성: 부화된 맨틀로부터 기원. 암석학회지, 18, 255-267.
  10. 오창환, 김정빈, 박영석, 김성원, 2006, 경기육괴의 고원생 대 암류들에 대한 SHRIMP U-Pb 저어콘 연대와 그 의의. 지질학회지, 42, 587-606.
  11. 이기욱, Williams, I.S., 정연중, 정창식, 2009, 경기육괴 동부지역에서 산출하는 맨거라이트의 트라이아스기 SHRIMP U-Pb 저어콘 연대. 대한자원환경지질학회 춘계 지질과학기술 공동학술대회 논문집, 270.
  12. 이대성, 윤석규, 김정진, 1975, 한국지질도(1:50,000), 창촌 지질도폭 설명서 국립지질광물연구소, 19p.
  13. 임순복, 전희영, 김유봉, 김복철, 조등룡, 2005, 서북옥천대 비봉-연무지역 변성퇴적암층의 지질시대, 층서 및 지질 구조. 지질학회지, 41, 335-368.
  14. 정연중, 이기욱, Kamo, S.L, 정창식, 2008, 경기육괴 동부 맨거라이트에 대한 저어콘 단일 입자 열이온화질량분석법 연대측정. 지질학회지, 44, 425-433.
  15. 정창희, 이상만, 이종혁, 박희인, 원종관, 김정환, 이창진, 김형식, 나기창, 박용안, 박창업, 양승영, 오민수, 윤선, 이동영, 이종혁, 조성권, 진명식, 최덕근, 최현일, 1999, 한국의 지질, 시그마프레스, 서울, 802p.
  16. 조등룡, 김용준, Armstrong, R., 2006, 서산층군 함철규암의 쇄설성 저어콘에 대한 SHRIMP U-Pb 연대: 시대와 층서의 제한. 암석학회지, 15, 119-127.
  17. 조등룡, 2010, 경기육괴 구룡층군 SHRIMP U-Pb 저어콘 연대: 임진강대 연천층군과의 대비와 지체구조적 의의. 한국암석학회.한국광물학회 공동학술발표회 논문집, 33.
  18. 조문섭, 권성택, 이진한, Nakamura, E., 1995, 연천-전곡 지역에 분포하는 임진강대의 고압각섬암. 암석학회지, 4, 1-19.
  19. 조문섭, 이기욱, 이승렬, Stern, R., 1999, 남한에서 가장 오 래된 지각물질의 나이: SHRIMP 연대 측정, 1999년도 한국광물학회.한국암석학회 공동학술발표회 논문집, 89.
  20. 진미정, 김종선, 이준동, 김인수, 백인성, 2000, 양산시 원효산 화강암에 산출되는 포획암에 대한 암석학적 연구. 암석학회지, 9, 142-168.
  21. Barbarin, B., 1986, Comparison of mineralogy of mafic magmatic enclaves and host granitoids, Central Sierra Nevada, Califonia. Meet. Cordilleran Sect. Geol. Soc. Am., Los Angeles, Calif., Abstr. Progr., 18, 83.
  22. Barbarin, B. and Didier, J., 1992, Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 145-153. https://doi.org/10.1017/S0263593300007835
  23. Baxter, S. and Feely, M., 2002, Magma mixing and mingling textures in granitoids: example from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76, 63-74. https://doi.org/10.1007/s007100200032
  24. Briqueu, L., Bougault, H. and Joron, J.L., 1984, Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planet. Sci. Letters, 68, 297-308. https://doi.org/10.1016/0012-821X(84)90161-4
  25. Buseck, P.R. and Veblen, D.R., 1978, Trace elements, crystal defects, and high resolution electron microsopy. Geochimicaet Cosmochimica Acta, 42, 669-678. https://doi.org/10.1016/0016-7037(78)90085-6
  26. Chang, E.Z., 1996, Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences, 13, 267-277. https://doi.org/10.1016/0743-9547(96)00033-5
  27. Chappell, B.W., 1999, Aluminium saturation in I- and Stype granites and the characterization of fractionated haplo granites. Lithos, 46, 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
  28. Chen, J. and Zhou, T., 1997, Geochemical and Geochronological Constraints on Evolution of the Dabie-Sulu Terrane, China. Basic science and Engineering, 1, 1097-1103.
  29. Cho, D.L., Lee S.R. and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 5, 191-200.
  30. Cho, M., Kim, H., Lee, Y., Horie, K. and Hidaka, H., 2008, The oldest(ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal, 12, 1-6. https://doi.org/10.1007/s12303-008-0001-1
  31. Cho, M., Na, J. and Yi, K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 99-109. https://doi.org/10.1007/s12303-010-0011-7
  32. Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J. and Kim, S.W., 2008, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, 18, 266-281. https://doi.org/10.1111/j.1440-1738.2008.00622.x
  33. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George Allen and Unwin, London.
  34. Ernst, W.G., and Liou, J.G., 1995, Contrasting plate-tectonic styles of the Qinling-Dabie- Sulu and Franciscan metamorphic belt. Geology, 23, 353-356. https://doi.org/10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
  35. Ernst, W.G., Tsujimori, T., Zhang, R. and Liou, J.G., 2007, Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation Along the East Asian Continental Margin. Annu. Rev. Earth Planet. Sci., 35, 73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
  36. Fowler, M.B., Kocks, H., Darbshire, D.P.F. and Greenwood, P.B., 2008, Petrogenesis of high Ba-Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105, 129-148. https://doi.org/10.1016/j.lithos.2008.03.003
  37. Francis, D.M., 1976, Amphibole pyroxenite xenoliths: Cumulate or replacement phenomena from the upper mantle, Nunivak Island, Alaska. Contributions to Mineralogy and Petrology, 58, 51-61. https://doi.org/10.1007/BF00384744
  38. Harris, N.B.W., Pearce, J.A. and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism. In: Coward, M.P., Reis, A.S.(Eds.), Collision Tectonics: Geological Society of London, Special Publication, 19, 67-81.
  39. Ireland, T.R. and Williams, I.S., 2003, Consideration in Zircon Geochronology by SIMS. Reviews in mineralogy and geochemistry, 53, 215-241. https://doi.org/10.2113/0530215
  40. Janousek, V., Bowes, D.R., Braithwaite, Colin J.R. and Rogers, G., 2000, Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozarovice granodiorite, Central Bohemian Pluton, Czech Republic. Transactions of the Royal Society of Edinburgh: Earth Science, 91, 15-26. https://doi.org/10.1017/S0263593300007264
  41. Jeon, H.J., Cho, M., Kim, H., Horie, K. and Hidaka, H., 2007, Early Archean to Middle Jurassic Evolution of the Korean Peninsula and Its Correlation with Chinese Cratons: SHRIMP U-Pb Zircon Age Constraints. Journal of Geology, 115, 525-539. https://doi.org/10.1086/519776
  42. Kim, C.-B., Turek, A., Chang, H.-W., Park, Y.-S. and Ahn, K.-S., 1999, U-Pb zircon ages for Precambrian and Mesozoic plutonic rocks in the Seoul-Cheongju-Chooncheon area, Gyeonggi massif, Korea. Geochemical Journal, 33, 379-397. https://doi.org/10.2343/geochemj.33.379
  43. Kim, O.J., 1972, Precambrian geology and structures of the central region of South Korea. J. Korean Inst. Mining Geol., 4, 231-240.
  44. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Rye, I.C., Rajesh, V.J., Kim, C.B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressured granulite facies metamorphism in the Gyeonggi Massif, South Korea: Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  45. Kim, T. and Oh, C.W., 2010, The subduction and collision related middle Paleozoic metamorphic events in the SW of Gyeonggi Massif in South Korea and its meaning to the tectonics in Northeast Asia. 2010 Proceedings of the Annual Joint Conference, Petrol. Soc. Korea and Miner. Soc. Korea, 1.
  46. Leake, B.E., 1978, Normenclature of amphiboles. Can. Min., 16, 501-520.
  47. Lee, S.R., Cho, M., Cheong, C.-S. and Park, K.-H., 1997, An early Proterozoic Sm-Nd age of mafic granulite from the Hwacheon area, South Korea. Geoscience Journal, 1, 136-142. https://doi.org/10.1007/BF02910205
  48. Lee, S.Y. and Oh, C.W., 2010, Triassic post collisional igneous activity and granulite facies metamorphic event in the Yangpyeong area, South Korea and its meaning to the tectonics of Northeast Asia. 2010 Proceedings of the Annual Joint Conference, Petrol. Soc. Korea and Miner. Soc. Korea, 8.
  49. Li, S., Xiao, Y., Liu, D., Chen, Y., Ge, N., Zhang, Z., Sun, S., Cong, B., Zhang, R., Hart, S.R. and Wang, S., 1993, Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and process. Chemical Geology, 109, 89-111. https://doi.org/10.1016/0009-2541(93)90063-O
  50. Li, Z.-X., 1994, Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 22, 739-742. https://doi.org/10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
  51. Ludwig, K.R., 2008, Isoplot 3.6. A User's Manual. Berkley Geochronology Center Special Publication 4, 2455 Ridge Road, Berkely, CA 94709, USA, 78p.
  52. Ludwig, K.R., 2009, SQUID 2.50. A User's Manual. Berkley Geochronology Center, 2455 Ridge Road, Berkely, CA 94709, USA, 102p.
  53. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  54. McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374. https://doi.org/10.1016/0012-821X(91)90029-H
  55. Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56, 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
  56. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, 113, 226-232. https://doi.org/10.1086/427671
  57. Oh, C.W., 2006, A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61. https://doi.org/10.1016/j.gr.2005.06.001
  58. Oh, C.W., Krishnan, S., Kim, S.W. and Kwon, Y.W., 2006a, Mangerite magmatism associated with a probable Late- Permian to Triassic Hongseong-Odesan collision belt in South Korea. Gondwana Research, 9, 95-105. https://doi.org/10.1016/j.gr.2005.06.005
  59. Oh, C.W., Kim, S.W. and Williams, I.S., 2006b, Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575. https://doi.org/10.1016/j.lithos.2006.03.051
  60. Oh, C.W. and Kusky, T.M., 2007, The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 639-657.
  61. Oh, C.W., Choi, S.G., Seo, J., Rajesh, V.J., Lee, J.H., Zhai, M. and Peng, P., 2009, Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Research, 16, 272-284. https://doi.org/10.1016/j.gr.2009.04.001
  62. Oh, C.W., Rajesh, V.J., Seo, J., Choi, S.G. and Lee, J.H., 2010, Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea, Lithos, 117, 198-208. https://doi.org/10.1016/j.lithos.2010.02.015
  63. Pearce, J.A., 1996, Source and setting of granitic rocks. Episodes 19, 120-125.
  64. Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69, 33-47. https://doi.org/10.1007/BF00375192
  65. Pearce, J.A., Harris, N.B. and Tindle, A.G., 1984, Trace element discrimination diagrams for the interpretation of granitic rocks. Journal of Petrology, 25, 957-983.
  66. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks in the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58, 63-81. https://doi.org/10.1007/BF00384745
  67. Peng, P., Zhai, M., Guo, J., Zhang, H. and Zhang. Y., 2008, Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton: an example from North Korea. Geological Magazine, 145, 1-11.
  68. Qian, Q., Chung, S.-L., Lee, T.-Y. and Wen, D.-J., 2003, Mesozoic high-Ba-Sr granitoids from North China: geochemical characteristics and geological implications. Terra Nova, 15, 272-278. https://doi.org/10.1046/j.1365-3121.2003.00491.x
  69. Ree, J.H., Cho, M., Kwon, S.T. and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South-Korea: the Imjingang belt. Geology, 24, 1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  70. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/2004TC001720.
  71. Seo, J., Choi, S.G. and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, 18, 479-496. https://doi.org/10.1016/j.gr.2009.12.009
  72. Smith, P.P.K., 1977, An electron microscope study of amphibole lamellae in augite. Contributions to Mineralogy and Petrology, 59, 317-322. https://doi.org/10.1007/BF00374560
  73. Streckeisen, A.L., 1974. Classification and Nomenclature of Plutonic Rocks. Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geologische Rundschau, 63, 773-785. https://doi.org/10.1007/BF01820841
  74. Sun, S.S and McDonough, W.F., 1989, Chemical and isotopic systematic of oceanic basalt: implications for mantle composition and process. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins: Geological Society of London, Special Publication, 42, 528-548.
  75. Tarney, J. and Jones, C.E., 1994, Trace elment geochemistry of orogenic igneous rocks and crustal growh models. Journal of the Geological Society of London, 151, 855- 868. https://doi.org/10.1144/gsjgs.151.5.0855
  76. Tsuchiya, N., Suzuki, S., Kimura, J.I. and Kagami, H., 2005, Evidence for slab melt/ mantle reaction: Petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 79, 179-206. https://doi.org/10.1016/j.lithos.2004.04.053
  77. Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. and Deng, W., 1996, Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37, 45-71. https://doi.org/10.1093/petrology/37.1.45
  78. Veblen, D.R. and Buseck, P.R., 1981, Hydrous pyriboles and sheet silicates in pyroxenes and uralities: intergrowth microstructures and reaction mechanisms, American Mineralogists, 66, 1107-1134.
  79. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. Mckibben, M.A. Shanks III, W.C., Ridley, W.I. (Eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 1-35.
  80. Williams, I.S., Cho, D.L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  81. Wilson, M., 1989, Igneous Petrogenesis. Unwin Hyman, London, 466p.
  82. Yang, J.H., Chung, S.L., Wilde, S.A., Wu, F.Y., Chu, M.F., Lo, C.H. and Fan, H.R., 2005, Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214, 99-125. https://doi.org/10.1016/j.chemgeo.2004.08.053
  83. Ye, H.-M., Li, X.-H., Li, Z.-X. and Zhang, C.-L., 2008, Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Research, 13, 126-138. https://doi.org/10.1016/j.gr.2007.08.005
  84. Yin, A. and Nie, S., 1993, An indentation model for the north and south china collision and the development of the Tan-Lu and Honam fault systems, Eastern Asia. Tectonics, 12, 801-813. https://doi.org/10.1029/93TC00313
  85. Zhai, M. and Liu, W., 1998, The boundary between Sino- Korea Craton and Yangtze Craton and its extension to the Korean Peninsula. Journal of Petrological Society of Korea, 7, 15-26.
  86. Zhang, K.J., 1997, North and South China collision along the eastern and southern North China margins. Tectonophysics, 270, 145-156. https://doi.org/10.1016/S0040-1951(96)00208-9

Cited by

  1. SHRIMP U-Pb Zircon Geochronology of the Guryong Group in Odesan Area, East Gyeonggi Massif, Korea: A new identification of Late Paleozoic Strata and Its Tectonic Implication vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.197
  2. Petrology of the Syenites in Sancheong, Korea vol.24, pp.1, 2015, https://doi.org/10.7854/JPSK.2015.24.1.25
  3. Geochemistry, zircon U–Pb ages, and Hf isotopic compositions of Precambrian gneisses in the Wonju–Jechon area of the southern Gyeonggi Massif: Implications for the Precambrian tectonic evolution of Korea and northeast Asia vol.283, 2016, https://doi.org/10.1016/j.precamres.2016.07.014
  4. Reply to comment on “Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton” by Yan et al. [Precambrian Res. (2014)] vol.255, 2014, https://doi.org/10.1016/j.precamres.2014.08.010
  5. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula vol.256-257, 2016, https://doi.org/10.1016/j.lithos.2016.03.019
  6. Review on the Triassic Post-collisional Magmatism in the Qinling Collision Belt vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.293
  7. Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton vol.248, 2014, https://doi.org/10.1016/j.precamres.2014.04.003
  8. Lithospheric mantle signatures as revealed by zircon Hf isotopes of Late Triassic post-collisional plutons from the central Korean peninsula, and their tectonic implications vol.27, pp.2, 2015, https://doi.org/10.1111/ter.12135
  9. Recognition of the Phanerozoic “Young granite gneiss” in the central Yeongnam massif vol.19, pp.1, 2015, https://doi.org/10.1007/s12303-014-0025-7
  10. Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula vol.246-247, 2016, https://doi.org/10.1016/j.lithos.2015.12.026
  11. Geochemical and Sr-Nd isotopic constraints on the petrogenesis of the Goesan monzodiorite pluton in the central Okcheon belt, Korea vol.25, pp.1, 2016, https://doi.org/10.1111/iar.12134
  12. Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: Ion microprobe monazite U‐Th‐Pb geochronology and Nd‐Sr isotope geochemistry vol.79, 2016, https://doi.org/10.1016/j.oregeorev.2016.05.016
  13. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton vol.240, 2014, https://doi.org/10.1016/j.precamres.2013.10.016
  14. A Study on Sedimentology of the Mesozoic Munamdong Formation, Northeastern Gyeonggi Massif, Korea vol.47, pp.5, 2014, https://doi.org/10.9719/EEG.2014.47.5.517
  15. Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons vol.131, pp.3-4, 2019, https://doi.org/10.1130/B32021.1