• 제목/요약/키워드: Glycosyltransferase

검색결과 104건 처리시간 0.03초

Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis

  • Kim, Hye-Lim;Kim, Ae Hyun;Park, Mi Bi;Lee, Soo-Woong;Park, Young Shik
    • BMB Reports
    • /
    • 제46권1호
    • /
    • pp.37-40
    • /
    • 2013
  • CY-007 and CY-049 pteridine glycosyltransferases (PGTs) that differ in sugar donor specificity to catalyze either glucose or xylose transfer to tetrahydrobiopterin were studied here to uncover the structural determinants necessary for the specificity. The importance of the C-terminal domain and its residues 218 and 258 that are different between the two PGTs was assessed via structure-guided domain swapping or single and dual amino acid substitutions. Catalytic activity and selectivity were altered in all the mutants (2 chimeric and 6 substitution) to accept both UDP-glucose and UDP-xylose. In addition, the wild type activities were improved 1.6-4.2 fold in 4 substitution mutants and activity was observed towards another substrate UDP-N-acetylglucosamine in all the substitution mutants from CY-007 PGT. The results strongly support essential role of the C-terminal domain and the two residues for catalysis as well as sugar donor specificity, bringing insight into the structural features of the PGTs.

Physiological roles of N-acetylglucosaminyltransferase V (GnT-V) in mice

  • Miyoshi, Eiji;Terao, Mika;Kamada, Yoshihiro
    • BMB Reports
    • /
    • 제45권10호
    • /
    • pp.554-559
    • /
    • 2012
  • Oligosaccharide modification by N-acetylglucosaminyltransferase-V (GnT-V), a glycosyltransferase encoded by the Mgat5 gene that catalyzes the formation of ${\beta}1$,6GlcNAc (N-acetylglucosamine) branches on N-glycans, is thought to be associated with cancer growth and metastasis. Overexpression of GnT-V in cancer cells enhances the signaling of growth factors such as epidermal growth factor by increasing galectin-3 binding to polylactosamine structures on receptor N-glycans. In contrast, GnT-V deficient mice are born healthy and lack ${\beta}1$,6GlcNAc branches on N-glycans, but develop immunological disorders due to T-cell dysfunction at 12-20 months of age. We have developed Mgat5 transgenic (Tg) mice (GnT-V Tg mice) using a ${\beta}$-actin promoter and found characteristic phenotypes in skin, liver, and T cells in the mice. Although the GnT-V Tg mice do not develop spontaneous cancers in any organs, there are differences in the response to external stimuli between wild-type and GnT-V Tg mice. These changes are similar to those seen in cancer progression but are unexpected in some aspects. In this review, we summarize what is known about GnT-V functions in skin and liver cells as a means to understand the physiological roles of GnT-V in mice.

Production of Therapeutic Glycoproteins throgh the Engineering of Glycosylation Pathway in Yeast

  • Roy, Samir-Kumar;Yasunori Chiba;Yoshifumi Jigami
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권4호
    • /
    • pp.219-226
    • /
    • 2000
  • The application of recombinant DNA technology to restructure metabolic net-work can change metabolite and protein products by altering the biosynthetic pathways in an organism. Although some success has been achieved, a more detailed and thorough investigation of this approach is certainly warranted since it is clear that such methods hold great potential based on the encouraging results obtained so far. In last decade, there have been tremendous advances in the field of glycobiology and the stage has been set for the biotechnological production of glycoproteins for therapeutic use. Today glycoproteins are one of the most important groups of pharmaceutical products. In this study the attempt was made to focus on identifying technologies that may have general application for modifying glycosylation pathway of the yeast cells in order to produce glycoproteins of therapeutic use. The carbohydrates of therapeutic recombinant glycoproteins play very important roles in determining their pharmacokinetic properties. A number of biological interactions and biological functions mediated by glycans are also being targeted for therapeutic manipulation in vivo. For a commercially viable production of therapeutic glycoproteins a metabolic engineering of a host cell is yet to be established.

  • PDF

Metabolic Engineering of Escherichia coli for the Biological Synthesis of 7-O-Xylosyl Naringenin

  • Simkhada, Dinesh;Kim, EuiMin;Lee, Hei Chan;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.397-401
    • /
    • 2009
  • Flavonoids are a group of polyphenolic compounds that have been recognized as important due to their physiological and pharmacological roles and their health benefits. Glycosylation of flavonoids has a wide range of effects on flavonoid solubility, stability, and bioavailability. We previously generated the E. coli BL21 (DE3) ${\Delta}pgi$ host by deleting the glucose-phosphate isomerase (Pgi) gene in E. coli BL21 (DE3). This host was further engineered for whole-cell biotransformation by integration of galU from E. coli K12, and expression of calS8 (UDP-glucose dehydrogenase) and calS9 (UDP-glucuronic acid decarboxylase) from Micromonospora echinospora spp. calichensis and arGt-4 (7-O-glycosyltransferase) from Arabidopsis thaliana to form E. coli (US89Gt-4), which is expected to produce glycosylated flavonoids. To test the designed system, the engineered host was fed with naringenin as a substrate, and naringenin 7-O-xyloside, a glycosylated naringenin product, was detected. Product was verified by HPLC-LC/MS and ESI-MS/MS analyses. The reconstructed host can be applied for the production of various classes of glycosylated flavonoids.

Nucleotide and protein researches on anaerobic fungi during four decades

  • Chang, Jongsoo;Park, Hyunjin
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.121-140
    • /
    • 2020
  • Anaerobic fungi habitat in the gastrointestinal tract of foregut fermenters or hindgut fermenters and degrade fibrous plant biomass through the hydrolysis reactions with a wide variety of cellulolytic enzymes and physical penetration through fiber matrix with their rhizoids. To date, seventeen genera have been described in family Neocallimasticaceae, class Neocallimastigomycetes, phylum Neocallimastigomycota and one genus has been described in phylum Neocallimastigomycota. In National Center for Biotechnology Information (NCBI) database (DB), 23,830 nucleotide sequences and 59,512 protein sequences have been deposited and most of them were originated from Piromyces, Neocallimastix and Anaeromyces. Most of protein sequences (44,025) were acquired with PacBio next generation sequencing system. The whole genome sequences of Anaeromyces robustus, Neocallimastix californiae, Pecoramyces ruminantium, Piromyces finnis and Piromyces sp. E2 are available in Joint Genome Institute (JGI) database. According to the results of protein prediction, average Isoelectric points (pIs) were ranged from 5.88 (Anaeromyces) to 6.57 (Piromyces) and average molecular weights were ranged from 38.7 kDa (Orpinomyces) to 56.6 kDa (Piromyces). In Carbohydrate-Active enZYmes (CAZY) database, glycoside hydrolases (36), carbohydrate binding module (11), carbohydrate esterases (8), glycosyltransferase (5) and polysaccharide lyases (3) from anaerobic fungi were registered. During four decades, 1,031 research articles about anaerobic fungi were published and 444 and 719 articles were available in PubMed (PM) and PubMed Central (PMC) DB.

The Role of a Second Protein (Des VIII) in Glycosylation for the Biosynthesis of Hybrid Macrolide Antibiotics in Streptomyces venezuelae

  • HONG JAY SUNG JOONG;KIM WON SEOK;LEE SANG KIL;KOH HWA SOO;PARK HEE SUB;PARK SU JIN;KIM YOUN SANG;YOON YEO JOON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.640-645
    • /
    • 2005
  • The function of the desVIII gene in the pikromycin producer Streptomyces venezuelae was characterized by gene deletion and complementation analysis. In addition to the DesVII glycosyltransferase, the desVIII gene that has previously been suggested to be required for the incorporation of endogenous deoxysugar, TDP-D-desosamine, into the aglycone of pikromycin is also required for the transfer of exogenous deoxysugars, TDP-D-quinovose and TDP-D-olivose.

Change of Bacillus cereus Flavonoid O-Triglucosyltransferase Into Flavonoid O-Monoglucosyltransferase by Error-Prone Polymerase Chain Reaction

  • Jung, Na-Ri;Joe, Eun-Ji;Kim, Bong-Gyu;Ahn, Byoung-Chan;Park, Jun-Cheol;Chong, You-Hoon;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1393-1396
    • /
    • 2010
  • The attachment of sugar to flavonoids enhances their solubility. Glycosylation is performed primarily by uridine diphosphate-dependent glycosyltransferases (UGTs). The UGT from Bacillus cereus, BcGT-1, transferred three glucose molecules into kaempferol. The structural analysis of BcGT-1 showed that its substrate binding site is wider than that of plant flavonoid monoglucosyltransferases. In order to create monoglucosyltransferase from BcGT-1, the error-prone polymerase chain reaction (PCR) was performed. We analyzed 150 clones. Among them, two mutants generated only kaempferol O-monoglucoside, albeit with reduced reactivity. Unexpectedly, the two mutants harbored mutations in the amino acids located outside of the active sites. Based on the modeled structure of BcGT-1, it was proposed that the local change in the secondary structure of BcGT-1 caused the alteration of triglucosyltransferase into monoglucosyltransferase.

Biological Synthesis of Baicalein Derivatives Using Escherichia coli

  • Han, Da Hye;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1918-1923
    • /
    • 2016
  • Two baicalein derivatives, baicalin and oroxylin A, were synthesized in this study. These derivatives exhibit diverse biological activities, such as anxiolytic and anticancer activities as well as memory enhancement. In order to synthesize baicalin from aglycon baicalein using Escherichia coli, we utilized a glycosyltransferase that regioselectively transfers glucuronic acid from UDP-glucuronic acid to the 7-hydroxy group of baicalein. To increase baicalin productivity, an araA deletion E. coli mutant, which accumulates UDP-glucuronic acid, was used, and ugd, which converts UDP-glucose to UDP-glucuronic acid, was overexpressed. Using these strategies, approximately $720.3{\mu}M$ baicalin was synthesized from $1,000{\mu}M$ baicalein. Oroxylin A was then synthesized from baicalein. Two O-methyltransferases (OMTs), ROMT-15 and POMT-9, were tested to examine the production of oroxylin A from baicalein. E. coli harboring ROMT-15 and E. coli harboring POMT-9 produced reaction products that had different retention times, indicating that they are methylated at different positions; the structure of the reaction product from POMT-9 was consistent with oroxylin A, whereas that from ROMT-15 was 7-O-methyl baicalein. Using E. coli harboring POMT-9, approximately 50.3 mg/l of oroxylin A ($177{\mu}M$) was synthesized from 54 mg/l baicalein ($200{\mu}M$).

A Comparative Analysis of Monofunctional Biosynthetic Peptidoglycan Transglycosylase (MBPT) from Pathogenic and Non-pathogenic Bacteria

  • Baker, Andrew T.;Takahashi, Natsumi;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • 제8권2호
    • /
    • pp.63-69
    • /
    • 2010
  • Monofunctional biosynthetic peptidoglycan transglycosylase (MBPT) catalyzes the formation of the glycan chain in bacterial cell walls from peptidoglycan subunits: N-acetylglucosamine (NAG) and acetylmuramic acid (NAM). Bifunctional glycosyltransferases such as the penicillin binding protein (PBP) have peptidoglycan glycosyltransferase (PGT) on their C terminal end which links together the peptidoglycan subunits while transpeptidase (TP) on the N terminal end cross-links the peptide moieties on the NAM monosaccharide of the peptide subunits to create the bacterial cell wall. The singular function of MBPT resembles the C terminal end of PBP as it too contains and utilizes a similar PGT domain. In this article we analyzed the infectious and non infectious protein sequences of MBPT from 31 different strains of bacteria using a variety of bioinformatic tools. Motif analysis, dot-plot comparison, and phylogenetic analysis identified a number of significant differences between infectious and non-infectious protein sequences. In this paper we have made an attempt to explain, analyze and discuss these differences from an evolutionary perspective. The results of our sequence analysis may open the door for utilizing MBPT as a new target to fight a variety of infectious bacteria.

Virulence genes of Streptococcus mutans and dental caries

  • You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.31-36
    • /
    • 2019
  • Streptococcus mutans is one of the important bacteria that forms dental biofilm and cause dental caries. Virulence genes in S. mutans can be classified into the genes involved in bacterial adhesion, extracellular polysaccharide formation, biofilm formation, sugar uptake and metabolism, acid tolerance, and regulation. The genes involved in bacterial adhesion are gbps (gbpA, gbpB, and gbpC) and spaP. The gbp genes encode glucan-binding protein (GBP) A, GBP B, and GBP C. The spaP gene encodes cell surface antigen, SpaP. The genes involved in extracellular polysaccharide formation are gtfs (gtfB, gtfC, and gtfD) and ftf, which encode glycosyltransferase (GTF) B, GTF C, and GTF D and fructosyltransferase, respectively. The genes involved in biofilm formation are smu630, relA, and comDE. The smu630 gene is important for biofilm formation. The relA and comDE genes contribute to quorumsensing and biofilm formation. The genes involved in sugar uptake and metabolism are eno, ldh, and relA. The eno gene encodes bacterial enolase, which catalyzes the formation of phosphoenolpyruvate. The ldh gene encodes lactic acid dehydrogenase. The relA gene contributes to the regulation of the glucose phosphotransferase system. The genes related to acid tolerance are atpD, aguD, brpA, and relA. The atpD gene encodes $F_1F_0$-ATPase, a proton pump that discharges $H^+$ from within the bacterium to the outside. The aguD gene encodes agmatine deiminase system and produces alkali to overcome acid stress. The genes involved in regulation are vicR, brpA, and relA.