DOI QR코드

DOI QR Code

Physiological roles of N-acetylglucosaminyltransferase V (GnT-V) in mice

  • Miyoshi, Eiji (Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine) ;
  • Terao, Mika (Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine) ;
  • Kamada, Yoshihiro (Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine)
  • Received : 2012.09.15
  • Published : 2012.10.31

Abstract

Oligosaccharide modification by N-acetylglucosaminyltransferase-V (GnT-V), a glycosyltransferase encoded by the Mgat5 gene that catalyzes the formation of ${\beta}1$,6GlcNAc (N-acetylglucosamine) branches on N-glycans, is thought to be associated with cancer growth and metastasis. Overexpression of GnT-V in cancer cells enhances the signaling of growth factors such as epidermal growth factor by increasing galectin-3 binding to polylactosamine structures on receptor N-glycans. In contrast, GnT-V deficient mice are born healthy and lack ${\beta}1$,6GlcNAc branches on N-glycans, but develop immunological disorders due to T-cell dysfunction at 12-20 months of age. We have developed Mgat5 transgenic (Tg) mice (GnT-V Tg mice) using a ${\beta}$-actin promoter and found characteristic phenotypes in skin, liver, and T cells in the mice. Although the GnT-V Tg mice do not develop spontaneous cancers in any organs, there are differences in the response to external stimuli between wild-type and GnT-V Tg mice. These changes are similar to those seen in cancer progression but are unexpected in some aspects. In this review, we summarize what is known about GnT-V functions in skin and liver cells as a means to understand the physiological roles of GnT-V in mice.

Keywords

References

  1. Hart, G. W. and Copeland, R. J. (2010) Glycomics hits the big time. Cell 143, 672-676. https://doi.org/10.1016/j.cell.2010.11.008
  2. Taniguchi, N., Miyoshi, E., Ko, J. H., Ikeda, Y. and Ihara, Y. (1999) Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochim. Biophys. Acta. 1455, 287-300. https://doi.org/10.1016/S0925-4439(99)00066-6
  3. Lau, K. S. and Dennis, J. W. (2008) N-Glycans in cancer progression. Glycobiology 18, 750-760. https://doi.org/10.1093/glycob/cwn071
  4. Dennis, J. W., Laferte, S., Waghorne, C., Breitman, M. L. and Kerbel, R. S. (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582-585. https://doi.org/10.1126/science.2953071
  5. Shoreibah, M., Perng, G. S., Adler, B., Weinstein, J., Basu, R., Cupples, R., Wen, D., Browne, J. K., Buckhaults, P., Fregien, N. and Pierce, M. (1993) Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. J. Biol. Chem. 268, 15381-15385.
  6. Saito, H., Nishikawa, A., Gu, J., Ihara, Y., Soejima, H., Wada, Y., Sekiya, C., Niikawa, N. and Taniguchi, N. (1994) cDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V+. Biochem. Biophys. Res. Commun. 198, 318-327. https://doi.org/10.1006/bbrc.1994.1045
  7. Partridge, E. A., Le Roy, C., Di Guglielmo, G. M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I. R., Wrana, J. L. and Dennis, J. W. (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120-124. https://doi.org/10.1126/science.1102109
  8. Guo, H. B., Lee, I., Kamar, M. and Pierce, M. (2003) N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell-cell adhesion and intracellular signaling pathways. J. Biol. Chem. 278, 52412-52424. https://doi.org/10.1074/jbc.M308837200
  9. Ihara, S., Miyoshi, E., Ko, J. H., Murata, K., Nakahara, S., Honke, K., Dickson, R. B., Lin, C. Y. and Taniguchi, N. (2002) Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J. Biol. Chem. 277, 16960-16967. https://doi.org/10.1074/jbc.M200673200
  10. Granovsky, M., Fata, J., Pawling, J., Muller, W. J., Khokha, R. and Dennis, J. W. (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6, 306-312. https://doi.org/10.1038/73163
  11. Zeisberg, M. and Neilson, E. G. (2009) Biomarkers for epithelial- mesenchymal transitions. J. Clin. Invest. 119, 1429-1437. https://doi.org/10.1172/JCI36183
  12. Yan, C., Grimm, W. A., Garner, W. L., Qin, L., Travis, T., Tan, N. and Han, Y. P. (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein- 2. Am. J. Pathol. 176, 2247-2258. https://doi.org/10.2353/ajpath.2010.090048
  13. Kalluri, R. and Neilson, E. G. (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776-1784. https://doi.org/10.1172/JCI200320530
  14. Desmouliere, A. (1995) Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol. Int. 19, 471-476. https://doi.org/10.1006/cbir.1995.1090
  15. Demetriou, M., Nabi, I. R., Coppolino, M., Dedhar, S. and Dennis, J. W. (1995) Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell Biol. 130, 383-392. https://doi.org/10.1083/jcb.130.2.383
  16. Terao, M., Ishikawa, A., Nakahara, S., Kimura, A., Kato, A., Moriwaki, K., Kamada, Y., Murota, H., Taniguchi, N., Katayama, I. and Miyoshi, E. (2011) Enhanced epithelial- mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J. Biol. Chem. 286, 28303-28311. https://doi.org/10.1074/jbc.M111.220376
  17. Miyoshi, E., Nishikawa, A., Ihara, Y., Gu, J., Sugiyama, T., Hayashi, N., Fusamoto, H., Kamada, T. and Taniguchi, N. (1993) N-acetylglucosaminyltransferase III and V messenger RNA levels in LEC rats during hepatocarcinogenesis. Cancer Res. 53, 3899-3902.
  18. Miyoshi, E., Ihara, Y., Nishikawa, A., Saito, H., Uozumi, N., Hayashi, N., Fusamoto, H., Kamada, T. and Taniguchi, N. (1995) Gene expression of N-acetylglucosaminyltransferases III and V: a possible implication for liver regeneration. Hepatology 22, 1847-1855.
  19. Pastore, S., Mascia, F., Mariani, V. and Girolomoni, G. (2008) The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 128, 1365-1374. https://doi.org/10.1038/sj.jid.5701184
  20. Schneider, M. R., Werner, S., Paus, R. and Wolf, E. (2008) Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology. Am. J. Pathol. 173, 14-24. https://doi.org/10.2353/ajpath.2008.070942
  21. Yoshida, A., Kanno, H., Watabe, D., Akasaka, T. and Sawai, T. (2008) The role of heparin-binding EGF-like growth factor and amphiregulin in the epidermal proliferation of psoriasis in cooperation with TNFalpha. Arch. Dermatol. Res. 300, 37-45. https://doi.org/10.1007/s00403-007-0809-y
  22. Kimura, A., Terao, M., Kato, A., Hanafusa, T., Murota, H., Katayama, I. and Miyoshi, E. (2012) Upregulation of Nacetylglucosaminyltransferase- V by heparin-binding EGFlike growth factor induces keratinocyte proliferation and epidermal hyperplasia. Exp. Dermatol. 21, 515-519. https://doi.org/10.1111/j.1600-0625.2012.01515.x
  23. Ihara, Y., Yoshimura, M., Miyoshi, E., Nishikawa, A., Sultan, A. S., Toyosawa, S., Ohnishi, A., Suzuki, M., Yamamura, K., Ijuhin, N. and Taniguchi, N. (1998) Ectopic expression of N-acetylglucosaminyltransferase III in transgenic hepatocytes disrupts apolipoprotein B secretion and induces aberrant cellular morphology with lipid storage. Proc. Natl. Acad. Sci. U.S.A. 95, 2526-2530. https://doi.org/10.1073/pnas.95.5.2526
  24. Wang, W., Li, W., Ikeda, Y., Miyagawa, J. I., Taniguchi, M., Miyoshi, E., Sheng, Y., Ekuni, A., Ko, J. H., Yamamoto, Y., Sugimoto, T., Yamashita, S., Matsuzawa, Y., Grabowski, G. A., Honke, K. and Taniguchi, N. (2001) Ectopic expression of alpha1,6 fucosyltransferase in mice causes steatosis in the liver and kidney accompanied by a modification of lysosomal acid lipase. Glycobiology 11, 165-174. https://doi.org/10.1093/glycob/11.2.165
  25. Ford, E. S., Giles, W. H. and Dietz, W. H. (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356-359. https://doi.org/10.1001/jama.287.3.356
  26. Bugianesi, E., Leone, N., Vanni, E., Marchesini, G., Brunello, F., Carucci, P., Musso, A., De Paolis, P., Capussotti, L., Salizzoni, M. and Rizzetto, M. (2002) Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123, 134-140. https://doi.org/10.1053/gast.2002.34168
  27. Matsuzawa, N., Takamura, T., Kurita, S., Misu, H., Ota, T., Ando, H., Yokoyama, M., Honda, M., Zen, Y., Nakanuma, Y., Miyamoto, K. and Kaneko, S. (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46, 1392-1403. https://doi.org/10.1002/hep.21874
  28. mice fed an atherogenic diet. Hepatology 46, 1392-1403. 28. Kamada, Y., Mori, K., Matsumoto, H., Kiso, S., Yoshida, Y., Shinzaki, S., Hiramatsu, N., Ishii, M., Moriwaki, K., Kawada, N., Takehara, T. and Miyoshi, E. (2012) NAcetylglucosaminyltransferase V regulates TGF-beta response in hepatic stellate cells and the progression of steatohepatitis. Glycobiology 22, 778-787. https://doi.org/10.1093/glycob/cws012
  29. Friedman, S. L. (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655-1669. https://doi.org/10.1053/j.gastro.2008.03.003
  30. Hui, A. Y., Dannenberg, A. J., Sung, J. J., Subbaramaiah, K., Du, B., Olinga, P. and Friedman, S. L. (2004) Prostaglandin E2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha 1(I) in hepatic stellate cells. J. Hepatol. 41, 251-258. https://doi.org/10.1016/j.jhep.2004.04.033
  31. Ioffe, E., Liu, Y. and Stanley, P. (1996) Essential role for complex N-glycans in forming an organized layer of bronchial epithelium. Proc. Natl. Acad. Sci. U.S.A. 93, 11041-11046. https://doi.org/10.1073/pnas.93.20.11041
  32. Shinzaki, S., Iijima, H., Fujii, H., Kuroki, E., Tatsunaka, N., Inoue, T., Nakajima, S., Egawa, S., Kanto, T., Tsujii, M., Morii, E., Takeishi, S., Asano, M., Takehara, T., Hayashi, N. and Miyoshi, E. (2012) Altered oligosaccharide structures reduce colitis induction in mice defective in beta-1,4-galactosyltransferase. Gastroenterology 142, 1172-1182. https://doi.org/10.1053/j.gastro.2012.02.008
  33. Gao, C., Maeno, T., Ota, F., Ueno, M., Korekane, H., Takamatsu, S., Shirato, K., Matsumoto, A., Kobayashi, S., Yoshida, K., Kitazume, S., Ohtsubo, K., Betsuyaku, T. and Taniguchi, N. (2012) Sensitivity of heterozygous alpha1,6- fucosyltransferase knock-out mice to cigarette smoke-induced emphysema: implication of aberrant transforming growth factor-beta signaling and matrix metalloproteinase gene expression. J. Biol. Chem. 287, 16699-16708. https://doi.org/10.1074/jbc.M111.315333

Cited by

  1. Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43 vol.2014, 2014, https://doi.org/10.1155/2014/742831
  2. Prognostic significance of β1,6-N-acetylglucosaminyltransferase V expression in patients with hepatocellular carcinoma vol.45, pp.9, 2015, https://doi.org/10.1093/jjco/hyv080
  3. Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells vol.14, pp.1, 2015, https://doi.org/10.1016/j.scr.2014.11.004
  4. Chitosan oligosaccharides inhibit epithelial cell migration through blockade of N -acetylglucosaminyltransferase V and branched GlcNAc structure vol.170, 2017, https://doi.org/10.1016/j.carbpol.2017.04.075
  5. Oligosaccharide modification byN-acetylglucosaminyltransferase-V in macrophages are involved in pathogenesis of bleomycin-induced scleroderma vol.24, pp.8, 2015, https://doi.org/10.1111/exd.12730
  6. Effect of GnT-V knockdown on the proliferation, migration and invasion of the SMMC7721/R human hepatocellular carcinoma drug-resistant cell line vol.13, pp.1, 2016, https://doi.org/10.3892/mmr.2015.4492
  7. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0070011
  8. Negative expression of N-acetylglucosaminyltransferase V in oral squamous cell carcinoma correlates with poor prognosis vol.2, pp.1, 2013, https://doi.org/10.1186/2193-1801-2-657
  9. Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells vol.389, 2014, https://doi.org/10.1016/j.carres.2014.01.010