The cellular mechanisms by which excess exposure to the excitatory neurotransmitter glutamate can produce neuronal injury are unknown. In this study, we found that glutamate induced cell death at IC (50) of 100 microM on the cultured human SH-SY5Y neuroblastoma cells. It has been hypothesized that glutamate excitotoxicity is related with the elevation of calcium (Ca) levels. To determine the dependence of glutamate neurotoxicity on Ca environment, extracellular (EDTA) and intracellular (BAPTA/AM) chelator were used. (omitted)
Chong, Wonee;Kim, Seong Nam;Han, Seong Kyu;Lee, So Yeong;Ryu, Pan Dong
The Korean Journal of Physiology and Pharmacology
/
v.19
no.2
/
pp.177-181
/
2015
The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate ($60{\sim}100{\mu}M$), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate ($100{\mu}M$) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.
Neurodegenerative diseases such as Alzheimer's disease, stroke, and Parkinson's disease, are caused by neuronal cell death. Apoptosis, oxidative stress, inflammation, excitotoxicity or ischemia are discussed to play a role of neuronal cell death. In order to find the candidate of neuroprotective agent, neuroprotective activity of some medicinal plants was investigated with in vitro assay system using glutamate-induced neurotoxicity in primary cultures of rat cortical cells. The aqueous methanolic extracts of twenty-seven medicinal plants were evaluated the protective effects against glutamate-injured excitotoxicity in rat cortical cells at the concentration of 50 $\mu$g/ml and 100 $\mu$g/ml, respectively. Among them, extracts of Lonicera japonica, Taraxacum platycarpum, Polygonum aviculare, Gardenia jasminoides, Forsythia viridissima, Lygodium japonicum, Panax notoginseng, Akebia quinata, Anemarrhena asphodeloides and Phellodendron amurense showed significantly neuroprotective activities against glutamate-induced neurotoxicity in primary rat cortical cells.
Neuronal excitotoxicity induces mitochondrial dysfunction and the release of proapoptotic proteins. Excitotoxicity, the process by which the overactivation of excitatory neurotransmitter receptors leads to neuronal cell death. Neuronal death by excitotoxicity was related to neuronal degenerative disorders and hypoxia, results from excessive exposure to excitatory neurotransmitters, such as glutamate. Glutamate acts at NMDA receptors in cultured neurons to increase the intracellular free calcium concentration. Therefore endogenous glutamate may be a key factor to regulate neuronal cell death via activating $Ca^{2+}$ signaling. For this issue, we tested some conditions to alter intracellular $Ca^{2+}$ level in dissociated hippocampal neurons of rats. Cultured hippocampal neuron were treated by KCl (20 mM), $CaCl_2$ (3.8 mM) and glutamate ($5{\mu}M$) for 24 hrs. Interestingly, The Optical Density of hippocampal neurons was increased by high KCl application in MTT assay data. This enhanced response by high KCl was dependent on synaptic $Ca^{2+}$ influx but not on intracellular $Ca^{2+}$ level. However, the number of neurons seemed to be not changed in Hoechst 33342 staining data. These results suggest that enhancement of synaptic activity plays a key role to increase mitochondrial signaling in hippocampal neurons.
Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
The Journal of Korean Medicine
/
v.29
no.5
/
pp.29-40
/
2008
Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.
L-trans-pyrrolidine-2,4-dicarboxylate (PDC) is a potent inhibitor of glutamate transporters. In our current study, we investigated whether the neuronal death induced by PDC involves mechanisms other than excitotoxicity in mixed mouse cortical cultures. Cortical cultures at 13-14 days in vitro were used and cell death was assessed by measuring the lactate dehydrogenase efflux into bathing media. Glutamate and PDC both induced neuronal death in a concentration-dependent manner but the neurotoxic effects of glutamate were found to be more potent than those of PDC. Treatment with 10, 100 and 200 ${\mu}$M PDC equally potentiated 50 ${\mu}$M glutamate-induced neuronal death. The neuronal death induced by 75 ${\mu}$M glutamate was almost abolished by treatment with the NMDA antagonists, MK-801 and AP-5, but was unaffected by NBQX (an AMPA antagonist), trolox (antioxidant), BDNF or ZVAD-FMK (a pan-caspase inhibitor). However, the neuronal death induced by 200 ${\mu}$M PDC was partially but significantly attenuated by single treatments with MK-801, AP-5, trolox, BDNF or ZVAD-FMK but not NBQX. Combined treatments with MK-801 plus trolox, MK-801 plus ZVAD-FMK or MK-801 plus BDNF almost abolished neuronal death, whereas combined treatments with trolox plus ZVADFMK, trolox plus BDNF or ZVAD-FMK plus BDNF did not enhance the inhibitory action of any single treatment with these drugs. These results demonstrate that the neuronal death induced by PDC involves not only in the excitotoxicity induced by the accumulation of glutamate but also the oxidative stress induced by free radical generation. This suggests that apoptotic neuronal death plays a role in PDCinduced oxidative neuronal injury.
Bee venom (BV), which is extracted from honeybees, has been used in traditional Korean medical therapy. Glutamate-mediated excitotoxicity contributes to neuronal death in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). This study is to investigate the effect of BV on glutamate-induced neurotoxicity on NSC-34 motor neuron cells. To determine the viability of motor neuronal cells, we performed with MTT assays in glutamate-treated NSC-34 cell with BV or without. For the measurement of oxidative stress, DCF assay was used in glutamate-treated NSC-34 motor neuronal cells with BV or without. To investigate the molecular mechanism of BV against glutamate-mediated neurotoxicity in NSC-34 cells, western blot analysis was used. Glutamate significantly decreased cell viability by glutamate dose- or treatment time-dependent manner in NSC-34 cells. However, BV pre-treatment dramatically inhibited glutamate-induced neuronal cell death. Furthermore, we found that BV increased the expression of Bcl-2 protein that is anti-apoptotic protein and reduced the generation of oxidative stress. BV has a neuroprotective role against glutamate neurotoxicity by an increase of anti-apoptotic protein. It suggests that BV may be useful for the reduction of neuronal cell death in neuronal disease models.
Glutamate excitotoxicity is emerging as a contributor to degeneration of spinal cord motoneurons in amyotrophic lateral sclerosis (ALS). Recently, we have reported that ghrelin protects motoneurons against chronic glutamate excitotoxicity through the activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-$3{\beta}$ pathways. Previous studies suggest that activated microglia actively participate in the pathogenesis of ALS motoneuron degeneration. However, it is still unknown whether ghrelin exerts its protective effect on motoneurons via inhibition of microglial activation. In this study, we investigate organotypic spinal cord cultures (OSCCs) exposed to threohydroxyaspartate (THA), as a model of excitotoxic motoneuron degeneration, to determine if ghrelin prevents microglial activation. Exposure of OSCCs to THA for 3 weeks produced typical motoneuron death, and treatment of ghrelin significantly attenuated THA-induced motoneuron loss, as previously reported. Ghrelin prevented THA-induced microglial activation in the spinal cord and the expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$. Our data indicate that ghrelin may act as a survival factor for motoneurons by functioning as a microglia-deactivating factor and suggest that ghrelin may have therapeutic potential for the treatment of ALS and other neurodegenerative disorders where inflammatory responses play a critical role.
Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of $Ca^{2+}$ and $Na^+$ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.
Overstimulation of both kainate (KA) and N-methyl-D-aspartate (NMDA) receptors has been reported to induce excitatoxicity which can be characterized by neuronal damage and formation of reactive oxygen free radicals. Neuroprotective effect of melatonin against KA-induced excitotoxicity have been documented in vitro and in vivo. It is, however, not clear whether melationin is also neuroportective against excitotoxicity mediated by NMDA receptors. In the present work, we tested the in vivo protective effects of striatally infused melatonin against the oxidative stress and neuronal damage induced by the injection of KA and NMDA receptors into the rat striatum. Melatonin implants consisting of 22-gauge stainless-steel cannule with melatonin fused inside the tip were placed bilaterally in the rat brain one week prior to intrastriatal injection of glutamate receptor subtype agonists. Melatonin showed protective effects against the elevation of lipid peroxidation induced by either KA or NMDA and recovered Cu, Zn-superoxide dismutase activities reduced by both KA and NMDA into the control level. Melatonin also clearly blocked both KA- and NMDA-receptor mediated neuronal damage assessed by the determination of choline acetyltransferase activity in striatal monogenages and by microscopic observation of rat brain section stained with cresyl violet. The protective effects of melatonin are comparable to those of DNQX and MK801 which are the KA- and NMDA-receptor antagonist, respectively. It is suggested that melatonin could protect against striatal oxidative damages mediated by glutamate receptors, both non-NMDA and NMDA receptors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.