References
- Goodall EF, Morrison KE. Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment. Expert Rev Mol Med. 2006;8:1-22.
- Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762:1068-1082. https://doi.org/10.1016/j.bbadis.2006.05.002
- Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992;326:1464-1468. https://doi.org/10.1056/NEJM199205283262204
- Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38:73-84. https://doi.org/10.1002/ana.410380114
- Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10:253-263. https://doi.org/10.1016/S1474-4422(11)70015-1
- Weydt P, Yuen EC, Ransom BR, Möller T. Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia. 2004;48:179-182. https://doi.org/10.1002/glia.20062
- Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15:601-609. https://doi.org/10.1016/j.nbd.2003.12.012
- Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4:389-398. https://doi.org/10.1007/s11481-009-9171-5
- Lasiene J, Yamanaka K. Glial cells in amyotrophic lateral sclerosis. Neurol Res Int. 2011;2011:718987.
- Gonzalez-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci. 1999;22:219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
- Tikka TM, Vartiainen NE, Goldsteins G, Oja SS, Andersen PM, Marklund SL, Koistinaho J. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain. 2002;125:722-731. https://doi.org/10.1093/brain/awf068
- Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21:2580-2588.
- Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005;85:495-522. https://doi.org/10.1152/physrev.00012.2004
- Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255-4261. https://doi.org/10.1210/en.141.11.4255
- Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656-660. https://doi.org/10.1038/45230
- Peino R, Baldelli R, Rodriguez-Garcia J, Rodriguez-Segade S, Kojima M, Kangawa K, Arvat E, Ghigo E, Dieguez C, Casanueva FF. Ghrelin-induced growth hormone secretion in humans. Eur J Endocrinol. 2000;143:R11-14. https://doi.org/10.1530/eje.0.143R011
- Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology. 2007;148:148-159.
-
Chung H, Seo S, Moon M, Park S. Phosphatidylinositol-3- kinase/Akt/glycogen synthase kinase-
$3{\beta}$ and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol. 2008;198:511-521. https://doi.org/10.1677/JOE-08-0160 - Hwang S, Moon M, Kim S, Hwang L, Ahn KJ, Park S. Neuroprotective effect of ghrelin is associated with decreased expression of prostate apoptosis response-4. Endocr J. 2009;56:609-617. https://doi.org/10.1507/endocrj.K09E-072
- Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D, Chung H, Oh MS, Lee KT, Park S. Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotox Res. 2009;15:332-347. https://doi.org/10.1007/s12640-009-9037-x
-
Lim E, Lee S, Li E, Kim Y, Park S. Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-
$3{\beta}$ pathways. Exp Neurol. 2011;230:114-122. https://doi.org/10.1016/j.expneurol.2011.04.003 - Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004;55:221-235. https://doi.org/10.1002/ana.10805
- Lee J, Lim E, Kim Y, Li E, Park S. Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Endocrinol. 2010;205:263-270. https://doi.org/10.1677/JOE-10-0040
- Llado J, Haenggeli C, Maragakis NJ, Snyder EY, Rothstein JD. Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol Cell Neurosci. 2004;27: 322-331. https://doi.org/10.1016/j.mcn.2004.07.010
- Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA. 1993;90:6591-6595. https://doi.org/10.1073/pnas.90.14.6591
-
Tolosa L, Caraballo-Miralles V, Olmos G, Llado J. TNF-
${\alpha}$ potentiates glutamate-induced spinal cord motoneuron death via NF-${\kappa}$ B. Mol Cell Neurosci. 2011;46:176-186. https://doi.org/10.1016/j.mcn.2010.09.001 - Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, Yune TY. Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology. 2010;151:3815-3826. https://doi.org/10.1210/en.2009-1416
- del Rio-Hortega P. Art and artifice in the science of histology. 1933. Histopathology. 1993;22:515-525. https://doi.org/10.1111/j.1365-2559.1993.tb00171.x
- Huang CX, Yuan MJ, Huang H, Wu G, Liu Y, Yu SB, Li HT, Wang T. Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect. Peptides. 2009;30:2286-2291. https://doi.org/10.1016/j.peptides.2009.09.004
- Chow KB, Cheng CH, Wise H. Anti-inflammatory activity of ghrelin in human carotid artery cells. Inflammation. 2009;32:402-409. https://doi.org/10.1007/s10753-009-9149-8
- Theil MM, Miyake S, Mizuno M, Tomi C, Croxford JL, Hosoda H, Theil J, von Hörsten S, Yokote H, Chiba A, Lin Y, Oki S, Akamizu T, Kangawa K, Yamamura T. Suppression of experimental autoimmune encephalomyelitis by ghrelin. J Immunol. 2009;183:2859-2866. https://doi.org/10.4049/jimmunol.0803362
- Ersahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Velioglu-Ogunc A, Tetik S, Ozdemir ZN, Sener G, Yegen BC. The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma. 2010;27:1143-1155. https://doi.org/10.1089/neu.2009.1210
- Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman J, Elsworth JD, Savitt JM, DiMarchi R, Tschoep M, Roth RH, Gao XB, Horvath TL. Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci. 2009;29:14057-14065. https://doi.org/10.1523/JNEUROSCI.3890-09.2009
- Jiang H, Li LJ, Wang J, Xie JX. Ghrelin antagonizes MPTPinduced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol. 2008;212:532-537. https://doi.org/10.1016/j.expneurol.2008.05.006
- Obay BD, Tasdemir E, Tümer C, Bilgin HM, Sermet A. Antiepileptic effects of ghrelin on pentylenetetrazole-induced seizures in rats. Peptides. 2007;28:1214-1219. https://doi.org/10.1016/j.peptides.2007.04.003
Cited by
- Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones vol.10, pp.None, 2012, https://doi.org/10.1186/1742-2094-10-40
- Ghrelin is neuroprotective in Parkinson’s disease: molecular mechanisms of metabolic neuroprotection vol.4, pp.1, 2012, https://doi.org/10.1177/2042018813479645
- Endogenous ghrelin's role in hippocampal neuroprotection after global cerebral ischemia: does endogenous ghrelin protect against global stroke? vol.304, pp.11, 2012, https://doi.org/10.1152/ajpregu.00594.2012
- Calorie restriction attenuates lipopolysaccharide (LPS)-induced microglial activation in discrete regions of the hypothalamus and the subfornical organ vol.38, pp.None, 2012, https://doi.org/10.1016/j.bbi.2013.11.014
- Ghrelin Gene Products in Acute and Chronic Inflammation vol.62, pp.5, 2014, https://doi.org/10.1007/s00005-014-0287-9
- The role of the SenseWear device and ghrelin for metabolism in amyotrophic lateral sclerosis vol.17, pp.3, 2012, https://doi.org/10.3109/21678421.2015.1113299
- Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes vol.6, pp.None, 2012, https://doi.org/10.1038/srep23673
- Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases vol.2017, pp.None, 2012, https://doi.org/10.1155/2017/5048616
- Neuregulin 1 Reduces Motoneuron Cell Death and Promotes Neurite Growth in an in Vitro Model of Motoneuron Degeneration vol.11, pp.None, 2012, https://doi.org/10.3389/fncel.2017.00431
- The neurological effects of ghrelin in brain diseases: Beyond metabolic functions vol.73, pp.None, 2012, https://doi.org/10.1016/j.neubiorev.2016.12.010
- Involvement of Astrocytes in Mediating the Central Effects of Ghrelin vol.18, pp.3, 2012, https://doi.org/10.3390/ijms18030536
- Therapeutic Potential of Targeting the Ghrelin Pathway vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040798
- Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease vol.14, pp.None, 2012, https://doi.org/10.3389/fnins.2020.614828
- Early low-dose ghrelin intervention via miniosmotic pumps could protect against the progressive dopaminergic neuron loss in Parkinson's disease mice vol.101, pp.None, 2012, https://doi.org/10.1016/j.neurobiolaging.2021.01.011
- Hexarelin Modulation of MAPK and PI3K/Akt Pathways in Neuro-2A Cells Inhibits Hydrogen Peroxide-Induced Apoptotic Toxicity vol.14, pp.5, 2012, https://doi.org/10.3390/ph14050444