• Title/Summary/Keyword: Glucose conversion rate

Search Result 89, Processing Time 0.024 seconds

Characterization of Bacillus polyfermenticus KJS-2 as a Probiotic

  • Kim, Kang-Min;Kim, Myo-Jeong;Kim, Dong-Hee;Park, You-Soo;Kang, Jae-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1013-1018
    • /
    • 2009
  • The identification and characterization of Bacillus polyfermenticus KJS-2 (B. polyfermenticus KJS-2) was conducted using TEM, an API 50CHB kit, 16S rDNA sequencing, a phylogenetic tree, and catalase and oxidase testing. The conversion rate of glucose to lactic acid by B. polyfermenticus KJS-2 was found to be $60.7{\pm}4.9%$. In addition, treatment of B. polyfermenticus KJS-2 with artificial gastric juice (pH 2.0) and bile acid (pH 6.5) for 4 h resulted in a final viability of $140{\pm}7.9%$ and $108{\pm}3.5%$, respectively. Finally, the results of adhesion experiments using Caco-2 cells revealed that the adherence of B. polyfermenticus KJS-2 to Caco-2 cells was approximately $65{\pm}0.6%$.

Continuous Production of Sorbitol with Permeabilized Zymomonas mobilis Immobilized in Alginate and Chitin (알저네이트 및 카이틴 고정화 Zymomonas mobilis 에 의한 쏠비톨의 연속생산)

  • 최도진;김원극전억한
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.223-227
    • /
    • 1990
  • This study describes the sorbitol production with permeabilized cells of Zymomonas mobilis immobilized in Ca-alginate. Toluene treated cells lose glucose-fructose oxidoreductase activity due to leaking of enzyme from the cells. In order to prevent this leakage, the permeabilized cells were immobilized in alginate and chitin. No significant loss of enzyme activity was apparent during 210h operation in a continuous process. The productivity of the continuous process was estimated to be about 3.5g/l -h for sorbitol at dilution rate $0.2h^{-1}$.

  • PDF

A Technique for Increasing Cellulose Hydrolysis (섬유소의 가수분해에 대한 기술 개발 모색(I))

  • 박주정;박성화
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.235-240
    • /
    • 1989
  • A novel pretreatment of rice straw has been developed to increase the reactivity of cellulose, in particular to increase the rate and extent of cellulose enzymatic hydrolysis. This technique is called ammonia-freeze-explosion method and relies on treatment of the lignocellulosic material with a volatile liquid under pressure followed by pressure release to evaporate the liquid and reduce the temperature by Bme E. Dale of Texas A & M University. Volatile liquids which also chemically explosion and swell lignocellulosic materials are particularly effective when used in this technique. Above four times of conversion of cellulose to glucose has been achived by enzymatic hydrolysis of rice straw with this method.

  • PDF

Bioconversion of ethanol from various sugars and cellulosic materials by brown rot fungus Phaeolus schweinitzii

  • Yoon, Ki Nam;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • A novel brown rot fungus Phaeolus schweinitzii IUM 5048 was firstly used for ethanol production. It was found that this fungus produced ethanol with various sugars, such as glucose, mannose, galactose and cellobiose at 0.28, 0.22, 0.06, and 0.22 g of ethanol per g of sugar consumed, respectively. This fungus showed relatively good ethanol production from xylose at 0.23 g of ethanol per g of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.08 g of ethanol per g sugar). P. schweinitzii was capable of producing ethanol directly from rice straw and corn stalks at 0.11 g and 0.13 g of ethanol per g of substrates, respectively, when the fungus was cultured in a basal medium supplemented with 20 g/L rice straw or corn stalks. These results suggest that P. schweinitzii can hydrolyze cellulose or hemicellulose to fermentable sugars and convert them to ethanol simultaneously under oxygen limited condition.

Comparison of the saccharide content of spent mushroom (Pleurotus ostreatus, Pleurotus eryngii, and Flammulina velutipes) substrates under various pretreatment conditions (전처리 방법에 따른 느타리, 큰느타리 및 팽이버섯 수확후 배지의 당함량 비교분석)

  • Kim, Jeong-Han;Lee, Yun-Hae;Chi, Jeong-Hyun;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.14 no.2
    • /
    • pp.70-74
    • /
    • 2016
  • A new method to utilize spent mushroom substrates (SMS) for ethanol production was investigated. Analysis of the chemical properties of SMS revealed that they were decomposed by the mushrooms during cultivation. In particular, the free sugar content in SMS was reduced to half of that in mushrooms. Of the tested SMS, the Pleurotus eryngii SMS was determined to be suitable for saccharification. Upon pretreatment with a 1% alkaline solution, Pleurotus eryngii SMS achieved 80.7% of its maximum saccharification ratio. The optimum pretreatment conditions for enzyme saccharification were 1% NaOH solution at $120^{\circ}$ for 60 min. Further studies are required to determine ethanol production using Pleurotus eryngii SMS.

Bioethanol Production from Popping Pretreated Switchgrass (팝핑전처리한 스위치그라스로부터 바이오에탄올 생산)

  • Kim, Hyun-Joo;Bae, Hyeun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2012
  • Switchgrass was selected as a promising biomass resource for bioethanol production through popping pretreatment, enzymatic saccharification and fermentation using commercial cellulase and xylanase, and fermenting yeast. The reducing sugar yields of popping pretreated switchgrass after enzymatic saccharification were above 95% and the glucose in thesaccharificaiton solution to ethanol conversion rate after fermentation with $Saccharomyces$ $cerevisiae$ was reached to 89.6%. Chemical compositions after popping pretreatment developed in our laboratory were 40.8% glucose and 20.3% xylose, with much of glucose remaining and only xylose decreased to 4.75%. This means that the hemicelluloses area broke off during popping pretreatment. FE-SEMexamination of substrate particles after popping pretreatment was showed fiber separation, and tearing and presence of numerous micro pores. These changes help explain, enhanced enzymatic penetration resulting in improved hydrolysis of switchgrass particles after popping pretreatment.

Microbial Conversion of Woody Waste into Sugars and Feedstuff (II) - Production of Cellulolytic Enzymes from Aspergillus fumigatus and Saccharification of Popla Wood (미생물(微生物)에 의한 목질자원(木質資源)의 당화(糖化) 및 사료화(飼料化)에 관(關)한 연구(硏究) (II) - Aspergillus fumigatus KC-1으로부터 섬유소 분해 효소의 생산 및 현사시나무의 효소가수분해)

  • Chung, Ki-Chul;Huh, Jeong-Weon;Myung, Kyu-Ho;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 1987
  • The cellulolytic activities of Aspergillus fumigatus KC-1 was investigated, which showed the most active producer of cellulase among the 256 strains of cellulose-decomposing microorganisms screened in our laboratory. All the examined cellulolytic activities (filter paper-, Avicel-, cotton-, CMC-, salicin- and xylansaccharifying activity) in a culture of A. fumigatus KC-1 grown on 1% popular sawdust pretreated with peroxide alkaline reached a maximum within 4-5 days. The optimum pH and temperature for the enzymatic activity was found to be pH 4.5 and $60^{\circ}C$ respectively. The sawdust of poplar wood delignified with 1% NaOH and 20% peracetic acid succesively recorded the highest hydrolysis rate in the tests of enzymatic saccharification. The major end product of hydrolysis of poplar wood with the cellulolytic enzymes obtained from A. fumigatus KC-1 was glucose with small amount of cellobiose and xylose. It can be concluded from these results that A. fumigatus KC-1 is an advantagous source of a cellulase that is capable of hydrolyzing cellulose to glucose rapidly. The influence of degree of delignification, substrate size and its concentration on the rate of hydrolysis of poplar wood was also discussed.

  • PDF

Xylitol Production from D-Xylose by Candida mogii ATCC 18364 (Candida mogii ATCC 18364를 이용한 D-Xylose로부터 Xylitol 생산)

  • 백승철;권윤중
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.226-230
    • /
    • 2004
  • Fermentation characteristics of D-xylose into xylitol by Candida mogii ATCC 18364, a potential xylitol producer from rice straw hemicellulose hydrolyzates, were investigated. The influences of the most important operational variables on xylitol production were examined. The best results in xylitol production were obtained in shake-flask fermentations when 3.0 g/L initial cell concentration of 12 hr-old cells grown in D-glucose containing medium were used as inoculum. The oxygen availability is a critical factor in xylose fermentation, therefore, xylose conversion into xylitol was investigated in a 2-L fermenter at different stirring rates. Maximum xylitol production was obtained with an aeration rate of 1 vvm at a stirring rate of 200 rpm.

Effect of the aeration rate and agitation speed on heteropolysaccharide-7 production by Beijerinckia indica

  • Jin, Hyeok;Yang, Jae-Gyun;Jeong, Jeong-Han;Jo, Yeong-Su;Lee, Dong-Su;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.192-195
    • /
    • 2002
  • Effect of aeration rate and agitation speed on cell growth and the production of heteropolysaccharide-7 (PS-7) by Beijerinckia indica was investigated. Aeration rate and agitation speed in a 7L bioreactor ranged from 0.5 to 1.5 vvm and from 300 to 500 rpm, respectively. Higher agitation speed with an aeration rate of 0.5 vvm in the bioreactor resulted in maintenance of higher concentration of dissolved oxygen in the medium, which enhanced the production of PS-7. In this study with a 7L bioreactor, maximal production of PS-7 was 11.0 g/L and its conversion rate from 2% (w/v) glucose was 0.55 when the aeration rate and agitation speed were 1.0 vvm and 500 rpm, respectively. Proper aeration rate and agitation speed might enhance the production of PS-7 as well as reduce the time to reach maximal production.

  • PDF

Effect of High Dietary Carbohydrate on the Growth Performance, Blood Chemistry, Hepatic Enzyme Activities and Growth Hormone Gene Expression of Wuchang Bream (Megalobrama amblycephala) at Two Temperatures

  • Zhou, Chuanpeng;Ge, Xianping;Liu, Bo;Xie, Jun;Chen, Ruli;Ren, Mingchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • The effects of high carbohydrate diet on growth, serum physiological response, and hepatic heat shock protein 70 expression in Wuchang bream were determined at $25^{\circ}C$ and $30^{\circ}C$. At each temperature, the fish fed the control diet (31% CHO) had significantly higher weight gain, specific growth rate, protein efficiency ratio and hepatic glucose-6-phosphatase activities, lower feed conversion ratio and hepatosomatic index (HSI), whole crude lipid, serum glucose, hepatic glucokinase (GK) activity than those fed the high-carbohydrate diet (47% CHO) (p<0.05). The fish reared at $25^{\circ}C$ had significantly higher whole body crude protein and ash, serum cholesterol and triglyceride, hepatic G-6-Pase activity, lower glycogen content and relative levels of hepatic growth hormone (GH) gene expression than those reared at $30^{\circ}C$ (p<0.05). Significant interaction between temperature and diet was found for HSI, condition factor, hepatic GK activity and the relative levels of hepatic GH gene expression (p<0.05).