DOI QR코드

DOI QR Code

Bioconversion of ethanol from various sugars and cellulosic materials by brown rot fungus Phaeolus schweinitzii

  • Yoon, Ki Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • Received : 2022.02.28
  • Accepted : 2022.03.22
  • Published : 2022.03.31

Abstract

A novel brown rot fungus Phaeolus schweinitzii IUM 5048 was firstly used for ethanol production. It was found that this fungus produced ethanol with various sugars, such as glucose, mannose, galactose and cellobiose at 0.28, 0.22, 0.06, and 0.22 g of ethanol per g of sugar consumed, respectively. This fungus showed relatively good ethanol production from xylose at 0.23 g of ethanol per g of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.08 g of ethanol per g sugar). P. schweinitzii was capable of producing ethanol directly from rice straw and corn stalks at 0.11 g and 0.13 g of ethanol per g of substrates, respectively, when the fungus was cultured in a basal medium supplemented with 20 g/L rice straw or corn stalks. These results suggest that P. schweinitzii can hydrolyze cellulose or hemicellulose to fermentable sugars and convert them to ethanol simultaneously under oxygen limited condition.

Keywords

References

  1. Brazdausks P, Puke M, Vedernikovs N, Kruma I. 2014. The effect of catalyst amount on the production of furfural and acetic acid from birch wood in the biomass pretreatment process. Baltic Forestry 20: 106-114.
  2. Chu BCH, Lee H. 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Advan 25: 425-441. https://doi.org/10.1016/j.biotechadv.2007.04.001
  3. de Almeida MN, Guimaraes VM, Falkoski DL, Visser EM, Siqueira GA, Milagres AMF, de Rezendea ST. 2013. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae. J Biotechnol 168: 71-77. https://doi.org/10.1016/j.jbiotec.2013.07.032
  4. Ho DP, Ngo HH, Guo W. 2014. A mini review on renewable sources for biofuel. Bioresour Technol 169: 742-749. https://doi.org/10.1016/j.biortech.2014.07.022
  5. Jung YH, Kim IJ, Kim HK, Kim KH. 2013. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132: 109-114. https://doi.org/10.1016/j.biortech.2012.12.151
  6. Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R. 2012. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112: 137-142. https://doi.org/10.1016/j.biortech.2012.02.109
  7. Kudahettige RL, Holmgren M, Imerzeel P, Sellstedt A. 2012. Characterization of bioethanol production from hexoses and xylose by the white rot fungus Trametes versicolor. Bioenerg Res 5: 277-285. https://doi.org/10.1007/s12155-011-9119-5
  8. Liang XH, Hua DL. Wang ZX, Zhang J, Zhao YX, Xu HP, Li Y, Gao MT, Zhang XD. 2013. Production of bioethanol using lignocellulosic hydrolysate by the white rot fungus Hohenbuehelia sp. ZW-16. Ann Microbiol 63: 719-723. https://doi.org/10.1007/s13213-012-0524-6
  9. Lin CW, Tran DT, Lai CY, I CY, Wu CH. 2010. Response surface optimization for ethanol production from Pennisetum alopecoider by Klebsiella oxytoca THLC0409. Biomass Bioener 34: 1922-1929. https://doi.org/10.1016/j.biombioe.2010.07.032
  10. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030
  11. Mizuno R, Ichinose H, Maehara T, Takabatake K, Kaneko S. 2009. Properties of ethanol fermentation by Flammulina velutipes. Biosci Biotechnol Biochem 73: 2240-2245. https://doi.org/10.1271/bbb.90332
  12. Nakamura Y, Sawada T, Inoue E. 2001. Enhanced ethanol production from enzymatically treated steam-exploded rice straw using extractive fermentation. J Chem Technol Biotechnol 76: 879-884. https://doi.org/10.1002/jctb.465
  13. Ohgren K, Bura R, Lesnicki G, Saddler J, Zacchi G. 2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42: 834-839. https://doi.org/10.1016/j.procbio.2007.02.003
  14. Okamura T, Ogata T, Minamimoto N, Takeno T, Noda H, Fukuda S, Ohsugi M. 2001. Characteristics of wine produced by mushroom fermentation. Biosci Biotechnol Biochem 65: 1596-1600. https://doi.org/10.1271/bbb.65.1596
  15. Okamoto K, Imashiro K, Akizawa, Y, Onimura A, Yoneda M, Nitta Y, Maekawa N, Yanase H. 2010. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett 32: 909-913. https://doi.org/10.1007/s10529-010-0243-7
  16. Okamoto K, Kanawaku R, Masumoto M, Yanase H. 2012. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzyme Micro Technol 50: 96-100. https://doi.org/10.1016/j.enzmictec.2011.10.002
  17. Okamoto K, Nitta Y, Maekawa N, Yanase H. 2011. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Micro Technol 48: 273-277. https://doi.org/10.1016/j.enzmictec.2010.12.001
  18. Okamoto K, Sugita Y, Nishikori N, Nitta Y, Yanase H. 2011. Characterization of two acidic β-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzyme Micro Technol 48: 359-364. https://doi.org/10.1016/j.enzmictec.2010.12.012
  19. Park YC, Kim JS. 2012. Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47: 31-35. https://doi.org/10.1016/j.energy.2012.08.010
  20. Park WH, Lee JH.2011. New wild fungi of Korea. Kyohak Publishing Co, Ltd, Seoul, Korea. p. 312.
  21. Puls J, Schuseil J. 1993. Chemistry of hemicellulose: Relationship between hemicellulose structure and enzymes required for hydrolysis; Coughlan MP, Hazlewood GP. Eds; Portland Press: London, p. 1-27.
  22. Rasmussen ML, Shrestha P, Khanal SK, Pometto AL III, (Hans) van Leeuwen J. 2010. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol 101: 3526-3533. https://doi.org/10.1016/j.biortech.2009.12.115
  23. Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F. 2002. The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis and Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77: 641-648. https://doi.org/10.1002/jctb.622
  24. Skory C, Freer SN, Bothast RJ. 1997. Screening for ethanol-producing filamentous fungi. Biotechnol Lett 19: 203-206. https://doi.org/10.1023/A:1018337003433
  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden Co, USA. http://www.nrel.gov/biomass/analyticalprocedure.html.
  26. Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  27. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of ribosomal RNA genes for phylogentics. In: Innis MA, Gelfand DH, Sniski JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press, p. 315-322.