• 제목/요약/키워드: Glucose addition

검색결과 1,570건 처리시간 0.024초

천련자 에탄올 추출물이 Streptozotocin으로 유발된 당뇨 흰쥐에 대한 혈당, 지질대사, 당대사 효소 활성과 항산화 작용에 미치는 영향 (The Effect of Meliae toosendan fructus Ethanol Extract on Blood Glucose, Lipid metabolism, Carbohydrate Methabolism Related Enzyme Activities and Antioxidative Effect in Streptozotocin-Induced Diabetic Rats)

  • 김옥경;임희진;제정민;이경미
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.277-284
    • /
    • 2014
  • The ethanol extraction yield of Meliae toosendan fructus(MT) was about 24.5% by extract apparatus. This study was done to investigate the carbohydrate metabolism related enzyme activities and antioxidative effects of MT in streptozotocin (STZ)-induced diabetic rats. The contents of serum glucose, triglyceride (TG) were significantly decreaed in MT treated group compared to the those of STZ-control group, also content of Total cholesterol was decreased. High density lipoprotein (HDL)-cholesterol was increased in MT treated group. The activity of glucose-6-pase(G-6-Pase) was significantly decreased in MT treated group. Also the activities of glucose-6-phosphate dehydrogenase(G-6-PDH) and glucokinase(Gk) were increaed in MT treated group. The content of hepatic glycogen was significantly increaed in MT treated group, in addition, content of malondialdehyde(MDA) was significanly decreased in MT treated group. Also, content of glutathione(GSH)was dereased in MT treated froup. whereas, activity of catalase(CAT) was significantly increaed in MT treated group compared to the those of STZ-control group. activity of glutathione peroxidase(GSH-Px) was inecreaed. In conclusion, these results indicated that ethanol extract of MT would have carbohydrate metabolism antioxidative effects in STZ-induced diabetic rats.

Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice

  • Wang, Zhiqiang;Hwang, Seung Hwan;Lee, Sun Youb;Lim, Soon Sung
    • Nutrition Research and Practice
    • /
    • 제10권3호
    • /
    • pp.282-287
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Jerusalem artichoke has inhibitory activity against ${\alpha}$-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on ${\alpha}$-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). MATERIALS/METHODS: The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-${\alpha}$-glucosidase activities in vitro by ${\alpha}$-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal ${\alpha}$-glucosidase activity were measured. RESULTS: The LJA showed the highest ${\alpha}$-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal ${\alpha}$-glucosidase activity was partially inhibited. CONCLUSIONS: These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.

Antidiabetic activity of Argyreia speciosa (sweet) (Burm.f.)Boj. in normoglycemic and Streptozotocin-induced diabetic rats

  • Habbu, P.V.;Mahadevan, K.M.;Kulkarni, V.H.;Marietta, P.;Pratap, V.;Thippeswamy, B.S.;Veerapur, V.P.
    • Advances in Traditional Medicine
    • /
    • 제10권2호
    • /
    • pp.90-102
    • /
    • 2010
  • Effect of ethanol (ASE) and water (ASW) extracts of Argyreia speciosa on blood glucose and lipid profile was investigated in normoglycemic and Streptozotocin (STZ)-induced diabetic animals. In oral glucose and sucrose tolerance test, treatment with ASE and ASW (100 and 200 mg/kg) and Glidenclamide (10 mg/kg) significantly improved the glucose and sucrose tolerance in normal animals. In addition, respective treatment for fifteen-day resulted in significant percentage reduction in serum glucose (SG) ie., 30.39% (lower dose of ASE) and 33.21% (higher dose of ASW). In standardized STZ (50 mg/kg, iv)-induced diabetic rats, a single dose of ASE and ASW treatment exhibited reduction in SG levels at different time intervals compared to basal levels. Administration of both the doses of ASE and ASW for fifteen-day days exhibited greater percentage reduction in glycemia (24.6%, 24.7%, 23.9% and 21.9% respectively) and also ameliorated restored to near normal value of all tested lipid parameters. Further, treatment also exhibited significantly improved glucose tolerance over the period of 120 min compared to diabetic control group. Eventhough treatment failed to increase serum insulin levels significantly but peripheral utilization of insulin was increased as evident by insulin tolerance test. Taken together, present study supports the traditional usage of title plant in the treatment of diabetes mellitus.

고지방식이로 유발된 비만 백서에서 가미감비제습탕이 비만 유발에 미치는 영향 및 기전 연구 (Anti-obesity Effects and Mechanism of Original and Modified Gambejaeseup-tang in Female Rats with Diet-induced Obesity)

  • 박선민;김다솔;강선아;이정복
    • 동의생리병리학회지
    • /
    • 제24권4호
    • /
    • pp.646-652
    • /
    • 2010
  • Gambejaeseup-tang (GBJST) have recently been used as an anti-obesity herbal medicine but their effect and mechanism of action have not been studied. We modified ingredients of GBJST based on the previous experiments about exploring herbs to suppress triglyceride accumulation in 3T3-L1 adipocytes. We investigated the effects of modified GBJST on energy, glucose and lipid homeostasis using female rats with diet-induced obesity and their action mechanism was also determined. Rats fed a high-fat diet (HFD) were divided into 3 groups: rats in each group received 0.2 or 2 g water extracts of modified GBJST (L-GBJST or H-GBJST) or 2 g cellulose per kg body weight (a negative control) on a daily basis. A further group was fed a low-fat diet (LFD) as a positive control. We found that modified GBJST dose-dependently decreased body weight and mesenteric and retroperitoneal fat more than the control. This decrease was due to the reduction in energy intake and the increase of energy expenditure. HFD increased fat oxidation more than LFD and modified GBJST further increased fat oxidation as a major energy source more than the control in a dose-dependent manner. In addition, H-GBJST improved glucose tolerance without changing serum insulin levels during an oral glucose tolerance test. H-GBJST also suppressed the increase of serum total and LDL cholesterol and triglyceride levels by HFD. In conclusion, modified GBJST have a good anti-obesity effect by decreasing energy intake and increasing energy expenditure mainly as fat in female rats with diet-induced obesity. It also improves glucose tolerance and lipid metabolism.

발효에 의한 오가피의 항당뇨 활성 촉진 (Fermentation Increases Antidiabetic Effects of Acanthopanax Senticosusbhpark@chonbuk.ac.kr)

  • 함성호;임병락;유가화;가선오;박병현
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.340-345
    • /
    • 2008
  • Extract of Acanthopanax senticosus has recently been demonstrated to possess significant antidiabetic potential, in accordance with the traditional use of this plant as an antidiabetic natural health product. The present study evaluated the effects of fermented extract (FE) of this plant on glucose-stimulated insulin secretion, glucose uptake, and streptozotocin-induced type 1 diabetes model. A 3 h pretreatment with FE prevented $IL-1{\beta}$ and $IFN-{\gamma}$ toxicity in isolated rat islets. However, it did not affect insulin-stimulated glucose uptake in C2C12 myotubes. In addition, pretreatment of mice with FE blocked the destruction of streptozotocin-induced islets and the development of type 1 diabetes. FE reduced blood glucose level, increased insulin secretion, and improved glucose tolerance in streptozotocin-treated mice, whereas nonfermented extract (NFE) had moderate effects. Immunohistochemical staining for insulin clearly showed that pretreatment with FE blocked the STZ-induced islets destruction and restored the number of islet cells that secreted insulin to the level of the control. Although the active principles and their mechanisms of action remain to be identified, FE may nevertheless represent a novel complementary therapy and a source of novel therapeutic agents against type 1 diabetes mellitus.

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제11권4호
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.

3T3-L1 지방세포주에서 포도당 수송에 미치는 $CdCl_2$의 영향 (Effects of Cadmium on Glucose Transport in 3T3- L1 adipocytes)

  • 강동희;길이룡;박광식;이병훈;문창규
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권1호
    • /
    • pp.87-95
    • /
    • 2005
  • Cadmium is well known as a toxic metal and has insulin mimicking effects in rat adipose tissue. This study was undertaken to investigate the effect of CdCl₂ on glucose transport and its mechanism in 3T3 - L1 adipocytes. CdCl₂ exhibits respectively 2.2 and 2.8 fold increases in the 2-deoxyglucose uptake when exposed to 10 and 25 μM of CdCl₂ for 12 hr. To investigate the stimulating mechanism of glucose transport induced by CdCl₂. Wortmannin and PD98059 were used respectively as PI3K inhibitor and MAPK inhibitor, which did not affect 2-DOG uptake. This results suggest that induced 2-deoxy-(l-3H)-D-glucose (2-DOG) uptake by CdCl₂ may not be concerned with the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker inhibited the 2- DOG uptake stimulated by CdCl₂. In addition, we also measured the increased production of Reactive oxygen substances (ROS) and glutathione (GSH) level in 3T3-L1 adipocytes to investigate correlation between the glucose uptake and increased production of ROS with H2DCFDA. CdCl₂ increased production of ROS. Induced 2-DOG uptake and increased production of ROS by CdCl₂ were decreased by N-acetylcystein (NAC). And L-buthionine sulfoximine (BSO) a potent inhibitor of γ-GCS, decreased of 2-DOG uptake. Also NAC and BSO changed the cellular GSH level, but GSH/GSSG ratio remained unchanged at 10, 25 μM of CdCl₂.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선 (Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites)

  • 박미선;배태성;이영석
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.145-152
    • /
    • 2016
  • 본 연구에서는 전기화학적 바이오센서의 포도당 감지능을 높이고자 금 나노 입자가 분산된 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs)에 CuO를 도입하였다. 금 나노 입자로 인하여 나노 클러스터(cluster) 형상을 갖는 CuO가 합성되었으며, 이는 포도당 감지능력에 매우 큰 영향을 나타내었다. 0.1 mole의 CuO가 합성되었을 때 CuO/Au@MWCNTs 나노복합재를 전극재료로서 바이오센서는 $504.1{\mu}A\;mM^{-1}cm^{-2}$으로 가장 높은 민감도를 보여주었으며, 이 값은 MWCNTs만을 전극으로 이용할 때보다 약 4배 정도 컸다. 또한, 0-10 mM의 긴 선형 구간(linear range)과 0.008 mM의 낮은 LoD (limit of detection) 값을 보여주었다. 이러한 실험 결과들은 CuO/Au@MWCNTs 나노복합재가 CuO를 이용한 다른 전기화학적 바이오센서보다 우수하다는 것을 입증하였으며, 이는 나노 클러스터 형상의 CuO가 포도당 감지에서 전기화학적 반응에 유리하기 때문으로 사료된다.

관찰연구에서 확인된 SGLT2 억제제의 심혈관질환 예방효과: 한국인의 결과를 중심으로 (Preventive Effect of an SGLT2 Inhibitor on Cardiovascular Disease in an Observational Study: Results from a Korean Population)

  • 하경화;김대중
    • 당뇨병
    • /
    • 제19권3호
    • /
    • pp.135-139
    • /
    • 2018
  • The sodium-glucose cotransporter-2 inhibitor (SGLT2i) is a new anti-hyperglycemic agent that have function to concomitantly inhibit the reabsorption of glucose and sodium in the renal proximal convoluting tubule. Recent two cardiovascular outcome trials showed that a lower risk of cardiovascular events with SGLT2i in people with type 2 diabetes. In addition, prior real-world data demonstrated similar SGLT2i effects, but these studies were limited to the United States and Europe. Thus, the CVD-REAL (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors) 2 Study was investigated cardiovascular outcomes in those initiated on SGLT2i versus other glucose-lowering drugs (oGLDs) across 6 countries in the Asia Pacific, the Middle East, and North American regions. In Korea, 336,644 episodes of initiation in SGLT2i or oGLD group between September 2014 and December 2016 were identified in Korea National Health Insurance database after propensity score matching. SGLT2i users was associated with a lower risk of all-cause death (hazard ratio [HR], 0.72; 95% confidence interval [CI], 0.67~0.77), hospitalization for heart failure (HHF) (HR, 0.87; 95% CI, 0.82~0.92), all-cause death or HHF (HR, 0.81; 95% CI, 0.78~0.85), myocardial infarction (HR, 0.81; 95% CI, 0.74~0.89), and stroke (HR, 0.82; 95% CI, 0.78~0.86) compared with oGLD users. In conclusion, initiation of SGLT2i had a lower risk of cardiovascular events in people with type 2 diabetes compared with oGLDs.