• 제목/요약/키워드: Global-local Features

검색결과 204건 처리시간 0.019초

Combined Features with Global and Local Features for Gas Classification

  • Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.11-18
    • /
    • 2016
  • In this paper, we propose a gas classification method using combined features for an electronic nose system that performs well even when some loss occurs in measuring data samples. We first divide the entire measurement for a data sample into three local sections, which are the stabilization, exposure, and purge; local features are then extracted from each section. Based on the discrimination analysis, measurements of the discriminative information amounts are taken. Subsequently, the local features that have a large amount of discriminative information are chosen to compose the combined features together with the global features that extracted from the entire measurement section of the data sample. The experimental results show that the combined features by the proposed method gives better classification performance for a variety of volatile organic compound data than the other feature types, especially when there is data loss.

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

지역적, 전역적 특징을 이용한 환경 인식 (Scene Recognition Using Local and Global Features)

  • 강산들;황중원;정희철;한동윤;심성대;김준모
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.298-305
    • /
    • 2012
  • In this paper, we propose an integrated algorithm for scene recognition, which has been a challenging computer vision problem, with application to mobile robot localization. The proposed scene recognition method utilizes SIFT and visual words as local-level features and GIST as a global-level feature. As local-level and global-level features complement each other, it results in improved performance for scene recognition. This improved algorithm is of low computational complexity and robust to image distortions.

Binary Hashing CNN Features for Action Recognition

  • Li, Weisheng;Feng, Chen;Xiao, Bin;Chen, Yanquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4412-4428
    • /
    • 2018
  • The purpose of this work is to solve the problem of representing an entire video using Convolutional Neural Network (CNN) features for human action recognition. Recently, due to insufficient GPU memory, it has been difficult to take the whole video as the input of the CNN for end-to-end learning. A typical method is to use sampled video frames as inputs and corresponding labels as supervision. One major issue of this popular approach is that the local samples may not contain the information indicated by the global labels and sufficient motion information. To address this issue, we propose a binary hashing method to enhance the local feature extractors. First, we extract the local features and aggregate them into global features using maximum/minimum pooling. Second, we use the binary hashing method to capture the motion features. Finally, we concatenate the hashing features with global features using different normalization methods to train the classifier. Experimental results on the JHMDB and MPII-Cooking datasets show that, for these new local features, binary hashing mapping on the sparsely sampled features led to significant performance improvements.

Bio-Inspired Object Recognition Using Parameterized Metric Learning

  • Li, Xiong;Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권4호
    • /
    • pp.819-833
    • /
    • 2013
  • Computing global features based on local features using a bio-inspired framework has shown promising performance. However, for some tough applications with large intra-class variances, a single local feature is inadequate to represent all the attributes of the images. To integrate the complementary abilities of multiple local features, in this paper we have extended the efficacy of the bio-inspired framework, HMAX, to adapt heterogeneous features for global feature extraction. Given multiple global features, we propose an approach, designated as parameterized metric learning, for high dimensional feature fusion. The fusion parameters are solved by maximizing the canonical correlation with respect to the parameters. Experimental results show that our method achieves significant improvements over the benchmark bio-inspired framework, HMAX, and other related methods on the Caltech dataset, under varying numbers of training samples and feature elements.

Secure Biometric Hashing by Random Fusion of Global and Local Features

  • Ou, Yang;Rhee, Kyung-Hyune
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.875-883
    • /
    • 2010
  • In this paper, we present a secure biometric hashing scheme for face recognition by random fusion of global and local features. The Fourier-Mellin transform and Radon transform are adopted respectively to form specialized representation of global and local features, due to their invariance to geometric operations. The final biometric hash is securely generated by random weighting sum of both feature sets. A fourfold key is involved in our algorithm to ensure the security and privacy of biometric templates. The proposed biometric hash can be revocable and replaced by using a new key. Moreover, the attacker cannot obtain any information about the original biometric template without knowing the secret key. The experimental results confirm that our scheme has a satisfactory accuracy performance in terms of EER.

얼굴인식 성능 향상을 위한 얼굴 전역 및 지역 특징 기반 앙상블 압축 심층합성곱신경망 모델 제안 (Compressed Ensemble of Deep Convolutional Neural Networks with Global and Local Facial Features for Improved Face Recognition)

  • 윤경신;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.1019-1029
    • /
    • 2020
  • In this paper, we propose a novel knowledge distillation algorithm to create an compressed deep ensemble network coupled with the combined use of local and global features of face images. In order to transfer the capability of high-level recognition performances of the ensemble deep networks to a single deep network, the probability for class prediction, which is the softmax output of the ensemble network, is used as soft target for training a single deep network. By applying the knowledge distillation algorithm, the local feature informations obtained by training the deep ensemble network using facial subregions of the face image as input are transmitted to a single deep network to create a so-called compressed ensemble DCNN. The experimental results demonstrate that our proposed compressed ensemble deep network can maintain the recognition performance of the complex ensemble deep networks and is superior to the recognition performance of a single deep network. In addition, our proposed method can significantly reduce the storage(memory) space and execution time, compared to the conventional ensemble deep networks developed for face recognition.

보안 분산 객체지향 데이타베이스 스키마의 통합 (Integration of Secure Distributed Object-Oriented Database Schemas)

  • 박우근;노봉남
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.645-654
    • /
    • 1995
  • 분산 DBMS는 네트워크의 각 사이트에서 서로 다른 사용자에 의해 독립적으로 설 계, 관리, 유지보수되고 있는 지역 스키마들을 통합하여 전역 가상 스키마를 제공하 며, 특정 사이트의 사용자가 다른 사이트의 지역 데이타베이스를 투명하게 이용할 수 있는 환경을 지원한다. 또한 각 지역 스키마에 부여된 스키마 구성 엔티티들의 보안 성질이 통합된 스키마에서도 유지되도록 해야 한다. 그러나 분산 DBMS에서 지역 스키 마의 보안성질을 유지할 수 있는 통합에 대한 연구는 거의 이루어지지 않았다. 본 논 문은 분산 DBMS 환경에서 각 사이트의 지역 스키마 정의를 위한 모델로서 객체지향 모 델을 확장한 다단계 보안 객체지향 데이타베이스 모델을 사용하였으며, 지역 스키마를 통합하는데 있어서 본래의 보안성질을 유지할 수 있는 통합 방법을 객체클래스, 객체 클래스사이의 관계를 중심으로 각각 8가지로 구분하여 제안하였다.

  • PDF

특징의 효과적 병합에 의한 광고영상정보의 분류 기법 (A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features)

  • 정재경;전병우
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.66-77
    • /
    • 2011
  • 본 논문은 특징을 효과적으로 병합하여 계층적 색인구조를 적용하는 광고영상의 분류기법에 대한 체계적 방법을 제안한다. 본 방법은 온라인 및 오프라인 상의 광고 영상 정보 관리를 위한 효과적인 응용으로써, 특별히 광고 영상정보의 추적을 위한 전처리 과정을 제공한다. 이를 위하여 전체 영상에 대한 일반적 정보를 포함하는 전역특징과 영상의 지역적 특성에 기반하는 지역특징을 고려한다. 고안된 지역특징은 영상 회전, 스케일링, 잡음추가, 빛의 변화에 불변하여 아핀(Affine) 변환에 의한 화면 차 영상에 대하여도 신뢰성 높은 매칭 도를 얻을 수 있고 동질의 영상 쌍을 검색하는데 있어서도 높은 정확도를 보여준다. 제안 방법은 우선 전역특징으로 전체영상자료에서 다수의 영상 쌍들로 개략적인 영상 군을 구성한 후에, 영상군안에서 지역특징에 의한 동질 영상 쌍들 즉 정밀한 영상 군들로 분리하는 정밀 매칭을 실행한다. 실행시간을 단축하기 위해 전형적인 클러스터링으로 전역특성이 유사한 영상들끼리 그룹화 함으로서 지역특징에 의한 동질 영상 쌍 간 과도한 매칭 시간의 문제점을 극복한다.

Object Cataloging Using Heterogeneous Local Features for Image Retrieval

  • Islam, Mohammad Khairul;Jahan, Farah;Baek, Joong Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4534-4555
    • /
    • 2015
  • We propose a robust object cataloging method using multiple locally distinct heterogeneous features for aiding image retrieval. Due to challenges such as variations in object size, orientation, illumination etc. object recognition is extraordinarily challenging problem. In these circumstances, we adapt local interest point detection method which locates prototypical local components in object imageries. In each local component, we exploit heterogeneous features such as gradient-weighted orientation histogram, sum of wavelet responses, histograms using different color spaces etc. and combine these features together to describe each component divergently. A global signature is formed by adapting the concept of bag of feature model which counts frequencies of its local components with respect to words in a dictionary. The proposed method demonstrates its excellence in classifying objects in various complex backgrounds. Our proposed local feature shows classification accuracy of 98% while SURF,SIFT, BRISK and FREAK get 81%, 88%, 84% and 87% respectively.