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Abstract 
 

Computing global features based on local features using a bio-inspired framework has shown 

promising performance. However, for some tough applications with large intra-class variances, 

a single local feature is inadequate to represent all the attributes of the images. To integrate the 

complementary abilities of multiple local features, in this paper we have extended the efficacy 

of the bio-inspired framework, HMAX, to adapt heterogeneous features for global feature 

extraction. Given multiple global features, we propose an approach, designated as 

parameterized metric learning, for high dimensional feature fusion. The fusion parameters are 

solved by maximizing the canonical correlation with respect to the parameters. Experimental 

results show that our method achieves significant improvements over the benchmark 

bio-inspired framework, HMAX, and other related methods on the Caltech dataset, under 

varying numbers of training samples and feature elements.  
 

 

Keywords: perceptual distance, parameterized metric learning, feature fusion, bio-inspired 
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1. Introduction 

Motivated by research in human vision, machine learning and other relevant fields, object 

recognition has made rapid progress in recent years. Nevertheless, in comparison with a 

human being’s vision system, which can distinguish approximately 30,000 categories with a 

few training samples, there is still a long, arduous way to go for future researches. In this paper, 

we focus on the specific branch of bio-inspired approaches [1,2,3,4,5,6,7,8], which has shown 

promising performance in a wide range of applications. 

Research on human vision has developed a fundamental framework for object recognition, 

into which several computer vision models may be embedded. The representation of images 

can be very complex and highly diverse [9,10]. It has been argued [11], that categories are 

defined by their similarity to prototypes (i.e., specific image patches or other representations) 

rather than by lists of abstract quantities. In the prototype based framework, perceptual 

distances (or similarity measures) defined over prototypes rather than feature spaces, lie in the 

focus of researches. The primary advantages of this framework are twofold:  (1) scaling the 

framework to a larger number of categories is quite straightforward, just by introducing 

enough prototypes and; (2) it allows designing the perceptual distance functions which are 

invariant to certain transformations or intra-class variations. Consequently, it is possible to 

train models with very few training samples. Serre and Poggio [2,3] proposed an hierarchical 

computational model (HMAX) for object recognition. The graphical illustration of an HMAX 

can be found in Fig. 2. HMAX is the modelling of the ventral stream of the primate visual 

cortex. The model is comprised of two types of layers, defined as S layers and C layers. S 

layers are the modelling of simple cells, which exhibit selectivity to orientation and scale, and 

can be modelled by Gabor filters [2,3,12]. C layers are the modelling of complex cells, which 

summarize the signals of different scales and orientations, and can be modelled by a 

maximization operation [3]. In the perspective of feature representation, the output of S layers 

are local features because they are the responses to image patches, rather than the whole image, 

while the output of the C layers are global features since the whole image is taken into account 

when computing each feature element. HMAX also can be considered as a framework that 

computes global features based on local features. HMAX is further extended [5,6] by 

considering more properties of the human vision system. 

However, local features designed for specific vision tasks might fail under some extreme 

conditions, e.g., lighting and viewpoints. For instance, SIFT [6] which was originally designed 

to represent multi-level quantization images (e.g., 256 levels gray images) will fail on binary 

images. Also, even images from the same category have large intra-class variances, as shown 

in Fig. 1. Therefore, single local features might be not sufficient to represent all attributes of 

complex objects. It has been recently proposed [13,14] that multiple local feature 

representations could address the above problem under the distance function learning 

framework. Motivated by the capability of bio-inspired models, we extended HMAX to adapt 

multiple local features for global feature extraction, and to explore integrating global features 

using metric learning. 
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Fig. 1. Image samples from the Bash category of the Caltech 101 dataset. Great appearance variation 

appears in these images. The reasons leading to the variances are differences in enviroment, biology, 

morphology, etc. The second image loses most of the texture information and has a different pose than 

the others. The first and third images have complex and confusing backgrounds. 

In this paper, we have generalized HMAX [2,3] to a global feature computation framework 

so that it can accommodate multiple local features, and we proposed a metric learning method 

to fuse high dimensional global features based on [1]. The framework for the proposed method 

is illustrated in Fig. 3. Although the generalization is based on an HMAX model, it also can be 

applied to other models [4,15] straightforwardly. The generalized model can adapt multiple 

local features and compute their corresponding global features. Then, a parameterized metric 

learning algorithm is developed to fuse these global features for object recognition. 

Essentially, this aligns the features at a metric level. For the features fusion task, a criterion 

defined as the maximal kernel canonical correlation [16,17] is leveraged to solve the metric 

learning problem. Our main contributions can be summarized into two points: (1) To extend 

the HMAX global features computation model to adapt multiple complementary local features, 

which greatly improves the capability of the system to recognize difficult categories, and, (2) 

to propose a metric learning method, parameterized metric learning, to make high dimensional 

feature fusion practical. Each set of metric weights is derived from the same template function, 

with a few parameters to be solved. In this way, the fusion model can be solved with a few 

training samples. We have also introduced the canonical correlation, to learn the metrics to 

fuse different global features together.     

2. Related Works 

This section reviews the related works, focusing on the HMAX [2,3] and its variants [5]. The 

HMAX models the ventral stream of the primate visual cortex, as an hierarchical structure for 

object recognition. The model is composed of two types of layers, S layers and C layers. S 

layers are the modelling of simple cells, which are selective to the signals of certain scales, 

orientations, etcetra, and can be implemented by Gabor filters [2,5]. In computations, S layers 

decompose signals into multiple channels, each of which is created by a filter selective to 

certain scales and orientations. C layers are the modeling of complex cells, which summarize 

the signals of different channels and can be implemented by a maximization operation or a 

pooling operation. 

The signal in the HMAX streams as S1→C1→S2→C2, where S1 and C1 are the first simple 

cell and the first complex cell, respectively, and S2 and C2 are the second simple cell and the 

second complex cell, respectively. The structure of the HMAX is illustrated in Fig. 2. C1 

produces local features that are invariant to scaling and rotation, and C2 computes global 

features by defining perceptual distance or similarity functions. Corresponding to the simple 

cells in the visual cortex, S layers improve the selectivity while C layers improve the 

invariance. Mutch and Lowe [5] extended the HMAX to consider sparsification and lateral 

inhibition, so that the features can benefit from the robustness of sparse representation. Serre 

and Poggio [18] proposed a feedforward and rapid recognition mechanism. Pinto and Cox [6]  
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Fig. 2. Illustration of the framework of HMAX [3,5]. S indicates a simple cell and C indicates a 

complex cell. H and W are the height and width of the input image. S is the number of scales.   

proposed a more biologically  plausible, feature computing framework. This framework [4] is 

set to learn a perceptual distance function with a metric learning algorithm [19], which 

determines weights for feature elements. In concept, these algorithms [4,19] learn a 

transformation for the entire sample space. 

The HMAX model and its variants follow the insight of Rosch [11] and share the 

following basic outline. Step 1, for an image, is the selection of a set of image patches. Step 2, 

for each patch, is the computation of a local feature, or C1 response, and then the image is 

represented by a set of local features. In Step 3, a set of prototypes is learned from the local 

features, and in Step 4 a distance function is chosen or learned [4,15] from local features and 

prototypes. Such a distance function is known as a perceptual distance, and in Step 5, for an 

image represented by a set of local features, a set of distances is returned [3] (with respect to a 

set of prototypes, followed by the maximization operation) as the global feature, or C2 

response, of the input image.  

3. Generalization of HMAX Perceptual Framework 

We considered a typical, perception-inspired framework HMAX [2], with a structure as 

shown in Fig. 2. HMAX is composed of the following four steps: (1) Computing the C1 

response to a given image, which is referred to as the C1 feature, (2) Learning the patch level 

prototypes from the C1 features for the i -th prototype, (3) Computing its convolution over the 

C1 feature of an image, the response for which is referred to as the i -th S2 response, and (4) 

For the i -th S2 response, computing the maximum response, and refering to it as the i -th 

element of the C2 feature. In the following section, we proceed to generalize the HMAX based 

on the work of Li etal [1].   

3.1. From the C1 Response to C1 Descriptors 

To generalize the HMAX to accommodate multiple local features, we must first represent an 

image as a set of patches, and then treat the C1 response to the image as a set of C1 

descriptors/local features of a set of patches. Then all the steps are updated accordingly, and 

other local features can be introduced into the framework by replacing the C1 descriptor. In the 

next section, we describe how to compute the raw global features from the local features. The 

fusion scheme for global features will be introduced in Section 4.  
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Fig. 3. Illustration of our proposed framework 

3.2. Generalized Perceptual Distance 

Let 1{ }n K

i iP   be a set of K  patches extracted from the n -th image
nI , where the size of the 

patches can be different and the location of the patches can also be different (e.g., located  

by grids or interest point detectors). Let 1{ }n K

i ic  be the local feature set corresponding to the 

patch set 1{ }n K

i iP  , where the local feature 
n

ic  is correspondingly extracted from the patch
n

iP . 

In the learning procedure, we randomly selected a set of local features 
*

1{ }D

i ic  from the local 

feature set of natural images as the prototypes. Then, for a specific type of local feature, the 

i -th element of the global feature ( )n DI Rx  is defined as,  

                                                      
*

( )
( ) min dist( , )

n n
j

def
n n n

i j i
c C I

x I


 c c                                                         (1) 

where function dist( , )   is a distance function between local feature 
n

jc  and prototype 
*

ic ; and 

the minimum distance can be regarded as an implementation of the maximal neural response. 

It is worth noting that only two descriptors from patches with the same size could be used to 

compute the perceptual distance. For the C1 feature, the maximum neural response with 

respect to the C1 prototypes corresponds to the shape tuning process of the visual cortex [2]. 

Note that 
n

ix  is the representation of patches with respect to the prototype 
*

ic . 

The above extension allows the accommodation of the local features extracted from 

patches, such as C1 [3], SIFT [12], shape context [20] and geometric blur [21]. It is interesting 

to note that C1 and most of the other local features follow the scale space theory [22], and are 

invariant to rotation, scaling or affine translation. This fact indicates that these features can 

naturally work with C1. In our work, two local features, C1 and SIFT, are used in the extended 

model because of their complementarity. C1 encodes rich contour and shape information, and 

SIFT encodes rich gradient information, complementarily. In the following sections, the C1 

based global feature is referred to as C2, and the SIFT based global feature is referred to as 

SIFT2. We then employed Euclidean distance and the normalized inner production as the 

perceptual distances for C1 and SIFT, respectively.   

In the extended model, as illustrated in Fig. 3, the final global feature is computed 

according to the following five steps: (1) Extract the patches from experimental images and 
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arbitrary natural images, where the natural images are used for prototype learning, (2) Given a 

type of local feature, extract a set of features from the patches, (3) Learn prototypes from the 

local features of natural images, (4) Compute the global feature for an image, based on its local 

features and the learned prototypes, (5) Fuse the global features as the final global feature. 

Multiple types of raw global features can be computed by replacing the local feature in step 2. 

These steps are summarized in Algorithm 1. 

 

Algorithm 1 Compute global feature  

1:  Input: a set of images 1{ }n N

nI  , and a specified local feature (e.g., C1 or SIFT) 

2:  for 1n   to N  do 

3:      extract K  patches 
1{ }n K

i iP 
 from 

nI  

4:      extract K  local features 1{ }n K

i ic  from K patches 1{ }n K

i iP    

5:  end for  

6:  extract a set of local features 
*

1{ }D

i ic  from natural images as the prototype set  

7:  for 1n   to N  do 

8:      for 1i   to D  do 

9:          
*

( )
( ) min ( , )n n

j

n n n

i j ic C I
x I d


 c c   (Eq. (1)) 

10:    end for     

11: end for   

12: Output:  1{x }n N

n  where 1x ( , , )n n n T

Dx x  

4. Parameterized Metric Learning for Feature Fusion  

In the previous section, two global features, C2 and SIFT2, are given, which are respectively 

based on C1 and SIFT. However, global features derived from different local features or 

different perceptual distance functions have different metrics. Typically, a set of weights, each 

representing a feature, are learned for feature fusion. This method is not flexible enough, 

because the metric difference within a feature is ignored. Research [13] has shown that 

features fusion can benefit from subspace learning. However, applying this method to our 

problem is expensive, due to the high dimensional feature spaces.  

Metric learning [4,19] is a popular method for feature fusion. It usually learns a metric for 

each dimension. This method is also very expensive for our problem because its computation 

cost increases as the numbers of dimensionality increase. In this section, we propose a novel 

metric learning method defined as parameterized metric learning, to deal with high 

dimensional feature fusion. A criterion known as maximal canonical correlation, is used to 

solve the metric weights. 

4.1. Parameterization of Metrics 

Regular metric learning methods [4,19] must determine a large number of independent 

weights. These methods are computationally expensive for high dimensional feature spaces. 

They tend to fail even when the number of training samples is relatively small. To make the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013                                 825 
Copyright ⓒ 2013 KSII 

metric learning practical for high dimensional feature space and few training samples, we 

propose parameterized metric learning for high dimensional feature fusion. The weights 

assigned to feature dimensions are derived from template functions, with few parameters. 

Consequently, we only have to determine a few function parameters instead of a large number 

of weights.  

For a given image 
nI , we suppose that similar feature elements correspond to similar 

prototypes. Therefore they share similar metrics, and should have similar weights. We use a 

continuous function ( )h H   as the ‘template function’ and assign the weights, 

( )n n

i i iw h x x    

to the global feature ( )n n DI Rx . Then the weighed feature ( )
n

nIx  can be formulated as:  

                                              

1

1

( ) ( ... ) ( )

( ( ) ... ( ))

( ) ( )

n n n n

D

n n T

D

n n

I diag w w I

h x h x

h I

 



  

    



x x

x

                                          (2) 

where  indicates that we apply function ( )h   over all elements of ( )n nIx . It suggests that 

the weighting feature, using the weights derived from template function h , is equal to 

applying h  to the feature. Then the task of determining the weight set
1{ }D

i iw 
 is converted to 

determine the parameters of the template function h . Weights derived from the same template 

function h , are nonlinearly dependent, because the number of free parameters of 
1{ }D

i iw 
 

(equal to the number of parameters of h ) is much smaller than D . This leads to a weak 

learning scheme. However, with the increasing capacity of template function h , the metric 

learning scheme will approach the regular metric learning. Similarly with the applications in 

[4,19], the proposed method can also be used for distance function learning, e.g., using 

maximal margin formulation for the triplets training set.  

4.2. Solution via Canonical Correlation Maximization 

Given the global features in Section 3, and the fusion method in Section 4.1, we proceed to 

solve the fusion problem in this section. The canonical correlations of within-class sets and 

between-class sets for discriminative learning have been explored, and some [24] have used 

canonical correlation analysis for feature fusion by determining pairs of projective matrices, 

given two candidate features. Here we used canonical correlation to determine the parameters 

of template functions, and the sequentially derived weights, instead of projective matrices [24], 

although sometimes weights can be regarded as a special projective matrix.  

In this work, we used a canonical correlation maximization formulation [16,17] to solve 

the feature fusion problem. The reason is that two features representing the same object tend to 

reflect the same properties. Let 
1{ , , }NI I I  be a set of N  images;  

1

1 1 1( , , )N TX  x x  

and 
1

2 2 2( , , )N TX  x x be two sets of global features, respectively computed from two types 

of local features using Eq. (1). Let 1( )h  , 2( )h H   be two scalar functions parameterized 

by 1 2,  . The two functions will be applied to two global features respectively. The canonical 

correlation of two weighted global features is,  
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1 2 1 2 1 1 2 21 2

1 1 2 2 21

( ) cov( ( ( ) ) ( ( ) ))

cov( ( ) ( ) )

T T

T

h X h X

h X h X

       

  

    

                         (3)

 

where cov  is the canonical correlation; 1 1( )h X  represents applying transformation 1( )h   

on feature matrix 1X , as shown in Eq. (2); vectors 1

1

DR   and 2

2

DR   are respectively 

the combination coefficients of canonical correlation for 1X  and 2X . We determined 

optimum values of 1 , 2 , 1 , 2  by maximizing Eq. (3) under a constraint:  

 
1 2 1 2

1 1 2 2 21

1 1 2 21 2

max cov ( ) ( )

var( ( ( ) )) var( ( ( ) )) 1

T

T T

h X h X

s t h X h X

   
  

  

  


   
 

For some simple template function ( )h  , the constrained maximization problem can be solved 

using the Lagrange method,  

1 2 1 2 1 1 1 2 2 21 2
( ) (var( ( ( ) )) 1) (var( ( ( ) )) 1)

T T
L h X h X                  

where 1 2   are Lagrange multipliers. In the following part, we will present a more 

general method, iterative optimization, to solve any template function.  

First, we fix 
( ) ( )

1 2( ) ( )t th h   given by the iteration t  and maximized Eq. (3) with respect 

to 1  and 2 . Then the maximization problem of the iteration 1t   becomes,  

1 2

( ) ( )

1 1 2 2 21

( ) ( )
1 1 2 21 21 2

max cov( ( ) ( ) )

var( ( ) ) var( ( ) ) 1

T t t

T Tt t

h X h X

s t h X h X

 
  

    




   
                     (4) 

This constrained maximization problem can be solved using the Lagrange method, leading to 

an eigenvalue problem. Denote 
( ) ( )

12 1 1 2 2cov( ( ) ( ) )t th X h X    , 
1 1

1 11 12 22 21M        

and 
1 1

2 22 21 11 12M       . Then 1  is the common eigenvalue of matrixes 1M  and 2M , and 

1  is the eigenvector corresponding to 1 .  

Second, we fix 
( )

1

t  and 
( )

2

t  which are given by the iteration t , and maximized Eq. (3) 

with respect to 1 2  ,  

1 2

( )( )
1 1 2 2 21

( ) ( )( ) ( )
1 1 2 21 21 2

max cov( ( ) ( ) )

var( ( ) ) var( ( ) ) 1

T

T T

h X h X

s t h X h X

 
  

    




   

tt

t tt t

                    (5) 

The constrained optimization problem, in principle, can be solved using the Lagrange method. 

However, for most template functions (nonlinear functions), it is difficult to obtain the 

analytical solution of 1 2  . We note that, the differentials 
1

L




 and 
2

L




 are still available. 

Therefore, 1  and 2  can be solved using a numerical method, gradient descent, in this case. 

The overall learning procedure is summarized in Algorithm 2. 

Once the parameter sets 1


 and 2


 are determined, two weighted global features can be 

computed by Eq. (2), leading to the final feature,  
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1 1 2 2( ) ( ( ) ( ) ( ) ( ) )n n n n T n n T TI h I h I   x x x  

In the metric learning based fusion scheme, weighting of each feature element could be 

regarded as an adjusting process, with feedback signals in the visual cortex. The effectiveness 

of the feedback has been validated in previous research [25].  

 

Algorithm 2 Parameterized metric learning for feature fusion 

1:  Input: two sets of global features 
1 1 1{x }n N

nX   , 2 2 1{x }n N

nX  ; iteration number T  

2:  initialize parameters 
(0) (0) (0) (0)

1 2 1 2{ , , , }     

2:  for 1t   to T  do 

3:      fix 
( 1) ( 1)

1 2,t t  
 and solve 

( ) ( )

1 2,t t   using Eq. (4) 

4:      fix 
( ) ( )

1 2,t t   and solve 
( ) ( )

1 2,t t   using Eq. (5)  

5:  end for  

6: Output:  
* * * *

1 2 1 2{ , , , }      

 

4.3. Scaling to Multiple Features Fusion 

The feature fusion method proposed in Section 4.2 is for two features. It is easy to scale the 

proposed method to multiple features fusion. For C sets of features 1, , CX X , suggested by 

canonical correlation based methods [16,17], we have two fusion schemes. First the 

incremental scheme, in which we first fuse 1 2,X X  using Algorithm 2, and then fuse the  

fused feature with 3X , until all the features are fused. Second, we divide C sets of features 

into two groups, and fuse the two groups of features using Algorithm 2.      

5. Experiments 

Object classification experiments with the fused global feature are performed on the Caltech 

101, to show the advantage of the extended model and the fusion scheme, and to examine the 

stability of fused features under varying numbers of samples and feature elements. To evaluate 

the proposed method, HMAX is chosen as the benchmark system because it provides the basic 

framework for our method. 

5.1 Dataset and Experimental Setup 

Caltech 101 contains 101 categories and 9,146 images in total. The number of images in each 

category varies from 40 to 800, and most categories have about 50 images. To speed up feature 

computation, all the images are normalized to gray images, with 140 pixels maximum and a 

fixed aspect ratio.  

There are several methods developed to extract patches, interest point detectors and grids. 

Interest region detectors include MSER [26], Harris-Affine and Hessian-Affine [27] which 

can be embedded into our framework. According to the comparison studies [28], we selected 

the Hessian-Affine as the interest region detector for the first experiment, and selected grid 

regions for the second experiments.  
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Table. 1 Accuracy comparison of four types of features. See the details of these features in the text. The 

number of positive training samples, negative training samples, positive testing samples and negative 

testing samples are 30, 50, 50 and 50, respectively. 

Data set C2[3] SIFT2 C2+SIFT2 slf-C2[5] V1-like[6] Ours 

Butterfly 80.92 82.20 85.15 83.55 85.97 88.79 

Brain 81.12 83.47 84.58 84.61 85.74 88.33 

Bonsai 79.69 80.05 81.30 82.67 83.55 86.81 

Chandelier 77.83 78.97 78.91 79.54 80.57 82.81 

Car-side 97.37 97.54 97.91 97.04 98.23 99.29 

Airplanes 96.74 97.03 97.35 97.68 98.14 98.00 

Buddha 79.47 82.53 83.49 82.96 83.98 87.29 

Scorpion 77.54 79.41 80.58 81.09 84.47 84.38 

For a candidate image, patches with the sizes of 4 4 , 8 8 , 12 12  and 16 16  are 

extracted from all the interest regions respectively. The C1 descriptors are constructed for each 

patch, while SIFT descriptors are constructed for 12 12  and 16 16  patches. For prototype 

learning, 500 patches per size are randomly extracted. Although descriptors can be extracted 

for all size of patches, descriptors from 12 12  and 16 16  patches work well. Then two sets 

of prototypes are learnt from natural images for C1 and SIFT, respectively.  

In all experiments, we use C1 and SIFT as the local features for their complementarity, and 

use Euclidean distance and the normalized inner production as the perceptual distances for C1 

and SIFT, respectively. We refer to the corresponding global features as C2 and SIFT2. See 

Section 3.2 for details. 

5.2 One-vs-Rest over a Subset of Caltech 

In this section, we developed a set of controlled experiments to verify the behaviors of the 

proposed methods. We deliberately chose eight difficult categories, and the background 

category, preferring those challenging categories of images taken under extreme light, point of 

view and mutative poses. The size of samples ranged from 80 to 800. In the experiments, the 

size of the positive training set and the length of the global features were varied. The numbers 

of negative training samples, positive test samples and negative test samples were set to 50 

each. We used linear SVM as the classifier. 

   First, we evaluated the performance of six types of features: C2 (2000 elements), SIFT2 

(2000 elements), the concatenation of C2 and SIFT2 (1600 C2 elements and 400 SIFT2 

elements, referred to as C2+SIFT2), the fusion of C2 and SIFT2 (1600 weighted C2 elements 

and 400 weighted SIFT2 elements), slf-C2 [5] and V1-like [6]. We randomly selected 30 sets of 

samples and 20 subsets of features for experiments with 30 20  rounds in total. As shown in 

Table 1, all features show high accuracy for the Car-side and Airplanes, and relative low 

accuracy for other categories. This is because the images of Car-side or Airplanes have small 

variance and similar appearance, even though they are taken from different conditions. For all 

eight categories, the C2+ SIFT2  feature outperforms the C2 feature by about 0.6 to 4.2%. On 

the other hand, it has been shown [3] that when increasing the number of feature elements, it is 

hard to improve the performance when the number is greater than 1,000. This supports the idea 

that fusing features computed from complementary local descriptors would be helpful. 

Compared with C2 features, our fusion scheme reaches an improvement of about 1.3 to 1.9% 

for Car-side and Airplanes, and about 5.0 to 7.9% for the other categories. When compared 
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with two state-of-the-art approaches, e.g., slf-C2 [5] and V1-like [6], the proposed approach 

also exhibits superior performance in most cases. 

 
Fig. 4. Accuracy comparison of C2 features (2,000 elements) and the proposed method (the fusion of 

1,600 C2 elements and 400 SIFT2 elements) on the Caltech 8 for varying numbers of training examples. 

 

Fig. 5. Accuracy comparison of C2 features and the fusion feature (75 % C2 and 25 % SIFT2 

elements) on the Caltech 8 for varying numbers of feature elements. 

To validate the robustness of the fusion scheme with respect to the number of training 

images, we varied the number of positive training images. Fig. 4 shows the results for 5 

categories, where our fusion scheme outperforms C2 in all five categories. For Car-side and 

Airplanes, the fusion scheme with five positive training images, achieves satisfied accuracies 

of about 97.8 and 95.1 %, with improvements of about 3.9 and 9.2 % respectively. For the 

other three categories, the fusion scheme with 20 positive training images reaches a significant 

accuracy of more than 83.1 %, while the accuracy of C2 features is under 77.2 %. It also 
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outperforms C2 by about 5.1 to 7.9 %, when the number of positive training images is more 

than 20. 

To validate the effectiveness of the proposed method with the number of feature elements, 

we performed a series of experiments by varying the the number of feature elements from 2 to 

2,500. As shown in Fig. 5, the fusion scheme outperforms C2 features for all numbers of 

elements. For categories of Car-side and Airplanes, the fusion scheme with 50 elements 

reached a satisfied accuracy of about 97.5 and 95.5 %, with improvements of about 4.0 and 

4.5 %. For the other three categories, the fusion scheme with 100 elements reaches a 

significant accuracy exceeding 80 %, when the accuracy of the C2 feature is no more than 

72.5 %. For the settings of 50 or more feature elements, the fusion scheme outperforms C2 

features by at least 5.9 %, especially the 11.8 % for the Butterfly category.  

5.3 Multiclass Recognition over Caltech 101 

In the above section, the behaviors of the proposed methods are verified using a set of 

controlled experiments, i.e., varying a factor and fixing the other factors. In this section, we 

further evaluate their ability in real recognition tasks. We tested the proposed method and five 

related methods, on the Caltech 101 dataset. A typical setting [29] for the Caltech 101 dataset 

is used in this experiment. For each round of tests, we randomly selected 15 images from each 

category for training, and another 15 images for testing. To verify the robustness of the 

proposed approach to classifiers, we used three typical classifiers, SVM with linear kernel, 

SVM with RBF kernel, and multiple kernel learning (MKL). For SVM and MKL, we used the 

default parameters suggested by libsvm, [30] and [29] respectively. To ensure the results are 

comparable, we used its released splits of datasets, i.e., the UCSD-MIT Caltech-101-MKL 

Dataset [29].  

 
Table. 2 The comparison evaluation of five features: SIFT [12], SIFT2, C2 [3], slf-C2 [5], V1-like [6] 

and our proposed method on Caltech 101 dataset. The numbers of training samples and test samples per 

category are set to 15, respectively. 

Classifier SIFT [12] SIFT2 C2 [3] slf-C2[5] V1-like[6] Ours 

SVM(linear) 40.51 44.28 42.53 46.57 47.12 48.52 

SVM(RBF) 42.83 44.34 41.98 47.05 48.89 50.36 

MKL 42.75[29] 46.62 45.79 49.54[29] 50.83[29] 52.18 

 

The results were averaged over 20 rounds of tests, and are reported in Table 2. As shown 

in Table 2, our method outperforms five other methods, for three different classifiers, which 

indicates that: (1) our method integrates the ability and information of C2 elements and SIFT2 

elements, and (2) our method is robust for classifiers. We also find that SIFT2 outperforms 

SIFT significantly, which verifies the effectiveness of the perception computation framework 

generalized in Section 3. Though slf-C2 [5] and V1-like [6] outperform C2 and SIFT2 on all 

classifiers, they are inferior to our fusion method. Further, we note that MKL outperforms 

linear SVM and RFB-SVM on most features. This fact is consistent with experiments in other 

research [29]. The improvement of our method over other methods might result from two 

aspects. First, the fusion scheme eliminates the metric difference between features, and second, 

the underling methodology and theory (simple cells and complex cells) of SIFT features, are 

similar to C1, therefore the resulting 2C  and SIFT2 are compatible. 

In the fusion scheme, the optimization process of Eq. (3) consumes much more time than 

the other steps. Using Gaussian function as the template function, solving Eq. (3) using 
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gradient descent on a PC takes about 40 seconds per 80 training images. When the size of 

dataset grows, the computation complexity mainly depends on maximization of R
N
. On the 

other hand, the patches that represent the candidate image are extracted from overlapping 

grids, [3] instead of interest regions, so Eq. (1) takes more time to compute the global features, 

but yields better performance. 

6. Conclusions 

In this paper, we extended a bio-inspired framework, HMAX, to adapt multiple local features 

to compute multiple global features. The point of the extension is the perception distance with 

respect to a set of prototypes. Then, we proposed parameterized metric learning for high 

dimensional features fusion. The metric learning model is solved through canonical 

correlation maximization formulation, producing final features. Experiments on the Caltech 

dataset show significant improvements over HMAX and other related methods, using settings 

with varying numbers of training images and feature elements, which also confirm the 

effectiveness and stability of the proposed method. The fusion scheme, however, achieves this 

performance at the cost of computational complexity, which will be a future research topic of 

this model.    
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