• Title/Summary/Keyword: Global State

Search Result 1,436, Processing Time 0.03 seconds

Key Layouts of the 5,000 ton' New Scientific Research Vessel of KIOST (5,000톤급 대형 해양과학연구선 설계 특성)

  • Park, Cheong Kee
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.235-247
    • /
    • 2015
  • The main purpose of procuring the oceanographic research vessel with state-of-the-art technology is to provide a floating laboratory to conduct field work on the global oceans. The vessel should be properly utilized to locate and evaluate unexplored natural resources as well as to contribute international efforts to better understand and manage global environmental issues. Top priorities in the vessel design are high safety standards, noise and vibration control efficiency, and effective application of research equipment. For the accomplishment of all activities, the vessel length over all should be extended ~100 m with a gross tonnage of ~5,900 ton. In particular, the dynamic positioning system II will essentially operate at sea state 6. The high efficiency emissions reduction system will also be adopted in preparation for entry into force of 3rd exhaust emission control (Tier III). About 130 navigational and scientific instruments will be installed. The final design and model test of the new research vessel were reviewed and completed, respectively, in 2014. Currently, the ship is being built on schedule and expected to be delivered in December 2015. Within the near future, the new vessel will assume the role of carrying out multidisciplinary oceanographic researches of the highest standards in a technologically advanced and environment friendly manner.

Multi-scalar Dynamics of Cluster Development: The Role of Policies in Three Korean Clusters (다규모 공간에서 클러스터 발전의 역동성 -한국의 클러스터 사례에서 국가정책의 역할을 중심으로-)

  • Kim, Hyung-Joo;Lee, Jeong-Hyop
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.5
    • /
    • pp.634-646
    • /
    • 2009
  • This paper critically examines cluster dynamics and development in a multi-scalar approach, criticizing both the argument overemphasizing local networks and endogenous development for regional development and the contention highlighting global networks and the role of global players. We argue that state policies, exogenous and direct, play a significant part in cluster dynamics and development especially in the case of Korea where the state government's strong policies have led to rapid industrialization. We analyze multi-scalar factors, especially the government policies at a national level, in the development paths of the three cases including Ulsan automobile cluster, Daedeok research cluster, and Dongdaemun fashion cluster.

A hierarchical model of self-determined motivation for thrift shopping behavior

  • Oh, Keunyoung;Choi, Yun-Jung
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.3
    • /
    • pp.327-339
    • /
    • 2017
  • A consumer is an individual entity with various motivations. This study is intended to incorporate a hierarchical structure of motivation to understand self-determined motivation for purchasing secondhand merchandise at thrift stores. A conceptual model adopted from Cadwallader et al. (2010)'s comprehensive model of motivation used in a marketing context was developed to investigate motivational process in secondhand merchandise shopping. The conceptual model includes the three levels of motivational structure-the global, contextual (environmental concern and frugality), and situational motivation. A series of the causal relationships among the three levels of self-determined motivations and buying intention to shop at thrift stores were hypothesized. A total of 219 respondents from two different northeastern state universities in the U.S. completed a self-administered survey. The results indicated that secondhand merchandise shopping is well explained in the hierarchical structure of self-determined motivation where the global motivation had a positive impact on the contextual motivations regarding environmental concern and frugality. Of the two contextual motivations, only environmental concern had a positive impact on situational motivation for shopping at thrift stores. Finally, the situational motivation positively influenced the intention to shop at thrift stores. The results of this model suggest that the hierarchical structure of self-determined motivation would be a very useful framework to understand consumer behavior for apparel shopping. Also, further research can be done to identify other contextual motivational factors to understand consumer motivation for shopping at thrift stores.

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

A Study on Investigating Actual State of Operation of Building Integrated Photovoltaic for the Spread of BIPV (건축물에 적용된 태양광발전시스템의 운전실태 조사 및 보급 확대에 관한 연구)

  • Kim, Byung-Joon;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.327-330
    • /
    • 2005
  • Today, the need for alternative energy has increased due to the global environmental problems and energy depletion. In order to solve a global environmental matter and an energy issue simultaneously, the application of the renewable energies in building has been constantly demanded. therefore, we must develop new energy resources that are abundant and provide substitutes for fossil fuels and we must study the application method of the renewable energies in building. Among renewable energies, the solar energy(photovoltaic system) is clean, inexhaustible, and available everywhere in the world and is judged to have the application possibility in building. Daegu city has a plan of putting a photovoltaic system on large buildings. For instance, EXCO, exhibition and convention building, and dormitory in Kyungpook National University, Dongho elementary school, Osan building in Keimyung University, Young korea academy in Daegu, are on the process of having a photovoltaic system. Therefore a study on the performance of photovoltaic system is important for the system design and maintenance. this paper describes the first invest cost, and performance test of the 95kW utility-interactive photovoltaic power system.

  • PDF

Energy Efficient Topology Control based on Sociological Cluster in Wireless Sensor Networks

  • Kang, Sang-Wook;Lee, Sang-Bin;Ahn, Sae-Young;An, Sun-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.341-360
    • /
    • 2012
  • The network topology for a wide area sensor network has to support connectivity and a prolonged lifetime for the many applications used within it. The concepts of structure and group in sociology are similar to the concept of cluster in wireless sensor networks. The clustering method is one of the preferred ways to produce a topology for reduced electrical energy consumption. We herein propose a cluster topology method based on sociological structures and concepts. The proposed sociological clustering topology (SOCT) is a method that forms a network in two phases. The first phase, which from a sociological perspective is similar to forming a state within a nation, involves using nodes with large transmission capacity to set up the global area for the cluster. The second phase, which is similar to forming a city inside the state, involves using nodes with small transmission capacity to create regional clusters inside the global cluster to provide connectivity within the network. The experimental results show that the proposed method outperforms other methods in terms of energy efficiency and network lifetime.

Econometric Estimation of the Climate Change Policy Effect in the U.S. Transportation Sector

  • Choi, Jaesung
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Over the past centuries, industrialization in developed and developing countries has had a negative impact on global warming, releasing $CO_2$ emissions into the Earth's atmosphere. In recent years, the transportation sector, which emits one-third of total $CO_2$ emissions in the United States, has adapted by implementing a climate change action plan to reduce $CO_2$ emissions. Having an environmental policy might be an essential factor in mitigating the man-made global warming threats to protect public health and the coexistent needs of current and future generations; however, to my best knowledge, no research has been conducted in such a context with appropriate statistical validation process to evaluate the effects of climate change policy on $CO_2$ emission reduction in recent years in the U.S. transportation. The empirical findings using an entity fixed-effects model with valid statistical tests show the positive effects of climate change policy on $CO_2$ emission reduction in a state. With all the 49 states joining the climate change action plans, the U.S. transportation sector is expected to reduce its $CO_2$ emissions by 20.2 MMT per year, and for the next 10 years, the cumulated $CO_2$ emission reduction is projected to reach 202.3 MMT, which is almost equivalent to the $CO_2$ emissions from the transportation sector produced in 2012 by California, the largest $CO_2$ emission state in the nation.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Effectiveness of rocking walls system in seismic retrofit of vertically irregular RC buildings

  • Tadeh Zirakian;Omid Parvizi;Mojtaba Gorji Azandariani;David Boyajian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.543-555
    • /
    • 2024
  • This study examines the seismic vulnerability of vertically irregular reinforced concrete (RC) frame buildings, focusing on the effectiveness of retrofitting techniques such as rocking walls (RWs) in mitigating soft story mechanisms. Utilizing a seven-story residential apartment as a prototype in a high-seismicity urban area, this research performs detailed nonlinear simulations to evaluate both regular and irregular structures, both before and after retrofitting. Pushover and nonlinear time history analyses were conducted using OpenSees software, with a suite of nine ground motion records to capture diverse seismic scenarios. The findings indicate that retrofitting with RWs significantly improves seismic performance: for instance, roof displacements at the Collapse Prevention (CP) level decreased by up to 23% in the irregular structure with retrofitting compared to its non-retrofitted counterpart. Additionally, interstory drift ratios were more uniform post-retrofit, with Drift Concentration Factor (DCF) values approaching 1.0 across all performance levels, reflecting reduced variability in seismic response. The global ductility of the retrofitted buildings improved, with displacement ductility ratios increasing by up to 29%. These results underscore the effectiveness of RWs in enhancing global ductility, mitigating soft story failures, and providing a more predictable deformation pattern during seismic events. The study thus provides valuable insights into the robustness and cost-effectiveness of using rocking walls for retrofitting irregular RC buildings.

Graph Connectivity-free Consensus Algorithm for State-coupled Linear Multi-agent Systems: Adaptive Approach (적응 제어를 이용하여 그래프 연결성을 배제시킨 선형 다개체 시스템의 상태변수 일치 알고리듬)

  • Kim, Ji-Su;Kim, Hong-Keun;Shim, Hyung-Bo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.617-621
    • /
    • 2012
  • This paper studies asymptotic consensus problem for linear multi-agent systems. We propose a distributed state feedback control algorithm for solving the problem under fixed and undirected network communication. In contrast with the conventional algorithms that use global information (e.g., graph connectivity), the proposed algorithm only uses local information from neighbors. The principle for achieving asymptotic consensus is that, for each agent, a distributed update law gradually increases the coupling gain of LQR-type feedback and thus, the overall stability of the multi-agent system is recovered by the gain margin of LQR.