• Title/Summary/Keyword: Global Mobility

Search Result 189, Processing Time 0.025 seconds

Global Mobility Support in Network Based Proxy Mobile IPv6 (네트워크 기반 프록시 모바일 IPv6에서 글로벌 이동 지원에 관한 연구)

  • Phung, Gia Khiem;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.688-696
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) is a network localized mobility management protocol that is independent of global mobility management protocols. In a single mobility domain (LMD), the mobile node (MN) is not involved in any IP mobility-related signaling and uses only its PMIPv6 home address for all its communication. Subsequently, when the MN moves into another LMD, the MN must change its PMIPv6 home address. In such a circumstance, host-based mobility signaling is activated. Thus, the nature of the network-based mobility of the PMIPv6 cannot be retained. Additionally, if the MN does not support global mobility, it cannot maintain communication with its correspondent node (CN). In this paper, we propose a solution for global mobility support in PMIPv6 networks, called Global-PMIPv6 that allows current communication sessions of a MN without mobility protocol stacks to be maintained, even when the MN moves into another LMD. Thus, Global-PMIPv6 retains the advantages of the PMIPv6 for global mobility support. We then evaluate and compare network performance between our proposed solution and PMIPv6.

Analytical Approach of Proxy-LMA Mobility System in Heterogeneous IP-based Mobile Networks

  • Cho, Chulhee;Choi, Jae-Young;Jeong, Jongpil
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.71-87
    • /
    • 2015
  • Mobile users want to be provided with undisrupted network services when they navigate on the Next-Generation (NG) wireless networks. For that, interlocking with a heterogeneous network is important, but there have been few studies on the method for guaranteeing global mobility. Thus, this paper proposes the Proxy-LMA technique, the mobile IP-based global inter-networking system, to enhance global mobility and interoperability within the Next-Generation (NG) network environment. The purpose of the proposed Proxy-LMA system is to expand the boundary of the mobility with regards to the existing mobility management protocol (PMIPv6 and MIPv6) in order to guarantee global mobility and interoperability within the heterogeneous network environment. The results of the performance evaluation showed that the proposed Proxy-LMA system was more efficient than other methods from the standpoint of signaling cost and delay in the heterogeneous network environment.

A Fast Global Mobility Supporting Scheme for IPv6 Using Global Mobility Agent (GMA) (Global Mobility Agent (GMA) 기반의 신속한 IPv6 전역 이동성 지원 방안)

  • Ahn, Jin-Su;Seo, Won-Kyeong;Choi, Jae-In;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1105-1114
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) has been standardized by the IETF NETLMM WG for network-based mobility management. The PMIPv6 can provide IP mobility for Mobile Nodes (MNs) with low handover latency and less wireless resource usage. But, since the PMIPv6 is basically designed for local mobility management, it cannot support directly global mobility management between different PMIPv6 domains. In the PMIPv6, since all traffic is routed through a Local Mobility Anchor (LMA), it causes a long end-to-end delay and triangular routing problem. Therefore, in this paper, we propose a fast network-based global mobility management scheme and route optimization scheme with a new network entity, called Global Mobility Agent (GMA). Numerical analysis and simulation results show that the proposed scheme is able to support global mobility between different public domains with low handover latency and low end-to-end delay, compared with the PMIPv6.

A Seamless Multicast Scheme Supporting Global Mobility in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 전역 이동을 지원하는 끊김 없는 멀티캐스트 기법)

  • Kim, Hwan-Gi;Kim, Jong-Min;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.258-267
    • /
    • 2013
  • Recently, Proxy Mobile IPv6(PMIPv6) networks have been drawing attention as the mobility management protocol that uses limited wireless resources effectively. And the multicast, which is a core technology of the Internet broadcast system such as mobile IPTV, has been widely discussed mainly based on PMIPv6 network. However, PMIPv6-based multicast cannot support the global mobility directly between different PMIPv6 domains because PMIPv6 is basically designed for local mobility in single PMIPv6 domain. Moreover, PMIPv6-based multicast causes the disconnection of services because it does not solve the packet loss problem during binding and group joining procedure. In this paper, we propose a global mobility scheme that supports the seamless multicast service in PMIPv6 networks. The proposed scheme supports the global mobility due to the addition of extra signalling messages between LMAs. Also, it achieves low latency because it performs fast binding and group joining procedure. We present the simulation results which show that the proposed scheme achieves the global mobility with low latency through the NS-2 simulation.

LC-GM2: Low-Cost Global Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 저비용의 글로벌 이동성관리 기법)

  • Kim, Jongyoun;Park, Jongsun;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.193-204
    • /
    • 2012
  • This paper specifies a low-cost global mobility management architecture and protocol procedure called LC-$GM^2$, which is based on Proxy Mobile IPv6. In LC-$GM^2$, mobility management is performed by the network entity. The benefit is the elimination of the wireless link data delivery tunnel overhead between a mobile node and the access router. To compare with the well-known Hierarchical Mobile IPv6 mobility management protocol and GPMIP, the location update, packet delivery, and total cost functions generated by a mobile node during its average domain residence time are formulated for each protocol based on Fluid-flow mobility model. Then, the impacts of various system parameters on the cost functions are analyzed. The analytical results indicate that the proposed global mobility management protocol can guarantee lower total costs.

Improved MPLS-MOB Scheme for Supporting Local and Global Mobility in NGN (차세대네트워크에서 로컬 및 글로벌 이동성 제공을 위한 향상된 MPLS-MOB 방안)

  • Yu, Myoung-Ju;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.54-62
    • /
    • 2011
  • This paper proposes both global and local mobility management (MM) scheme improved from Multi Protocol Label Switching (MPLS)-based Mobility Management scheme (MPLS-MOB) for seamless service in Next Generation Network (NGN). The proposed scheme adds local MM on the existing MPLS-MOB which supports global MM by processing handover signaling by 2.5 layer switching via Label Switch Path (LSP) of MPLS. We numerically analyze and verify that the proposed scheme has lower handover latency time than the existing ones, such as micro-MM methods using MPLS as well as MIP and an interworking scenario between PMIP and MIP.

Current Status and Development Direction of Advanced Air Mobility ICTs (Advanced Air Mobility ICT 기술 현황 및 발전 방향)

  • B.J. Oh;M.S. Lee;B.K. Kim;Y.J. Jeong;Y.J. Lim;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

Simple Mobility Management Protocol for Global Seamless Handover (글로벌 끊김 없는 핸드오버를 위한 간단한 이동성 관리 프로토콜)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.12
    • /
    • pp.9-16
    • /
    • 2011
  • Most of the current mobility management protocols such as MIPv4/6 and its variants standardized by the IETF do not support global seamless handover. This is because they require comprehensive changes of the existing network infrastructure. In this article, we propose a simple mobility management protocol (SMMP) which can support global seamless handover between homogeneous or heterogeneous wireless networks. The idea is that the SMMP employs separate location management function as done in SIP to support global user and service mobility. In addition, the bidirectional tunnels are dynamically constructed to support seamless IP mobility by extending the IEEE 802.21 MIH standards. The detailed architecture and functions of the SMMP have been designed. Finally, the simulation results, using NS-2, show that the proposed SMMP outperforms the existing MIPv6 and HMIPv6 in terms of handover latency, packet loss, pear signal noise ratio (PSNR).

PMIPv6-based Mobility Management Scheme for Vehicular Communication Networks (차량통신망 지원을 위한 PMIPv6 기반 이동성 관리 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • This paper proposes mobility management schemes providing Internet session continuity to moving vehicles in the V2I (Vehicle-to-Infrastructure) environment of the vehicular communication networks. Since PMIPv6 is localized mobility management protocol, PMIPv6 can not be directly applied to the vehicular communication network requiring global mobility coverage. Therefore, in this paper, we derive two scenarios of applying PMIPv6 to vehicular communication network environment and propose PMIPv6-based global mobility management schemes for those scenarios. Through simulations, we show that the proposed schemes can significantly decrease the Internet service discontinuity.

Analytical Approach of New Random-walk Based Mobility Management Scheme in IP-based Mobile Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • In next-generation wireless networks, provisioning of IP-based network architecture and seamless transmission services are very important issues for mobile nodes. For this reason, a mobility management mechanism to support global roaming is highly regarded. These technologies bring a broader life by using a global roaming account through the connection of multiple devices or technology to mobile users; they also provide real-time multimedia services. This paper presents a comprehensive performance analysis of fast handover for hierarchical mobile IPv6 (F-HMIPv6), hierarchical mobile IPv6 (HMIPv6), Proxy Mobile IPv6 (PMIPv6), and fast Proxy Mobile IPv6 (FPMIPv6) using the fluid-flow model and random-walk model. As a result, the location update cost of the PMIPv6 and FPMIPv6 is better than that of HMIPv6 and F-HMIPv6. These results suggest that the network-based mobility management technology is superior to the hierarchical mobility management technology in the mobility environment.