• 제목/요약/키워드: Glioblastoma (GBM)

검색결과 61건 처리시간 0.03초

Midline Glioblastoma Multiforme With Bilateral Symmetric Cysts

  • Lee, Hai-Ong;Koh, Eun-Jeong;Oh, Young-Min;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제43권2호
    • /
    • pp.105-108
    • /
    • 2008
  • Cystic glioblastoma multiforme (GBM) is a rare disease. Its exact prevalence has not yet been reported. Also, the mechanism of cyst formation remains to be elucidated. We report a case of GBM with a large peripheral cyst. A 43-year-old woman visited our clinic with a 3-month history of severe headache, memory impairment and general weakness. T1-weighted gadolinium-enhanced magnetic resonance (MR) image revealed a midline enhanced solid mass and bilateral symmetric banana-shaped peripheral cysts. A centrally enhanced mass was measured $2{\times}4$ cm in size and both mass and cysts as $7{\times}7$ cm. Both the frontal lobe and the frontal horn were severely compressed inferiorly and posteriorly. We resected a midline solid tumor and cysts via the bilateral interhemispheric transcortical approach. Histopathologic examination revealed GBM. The patient was subsequently treated with fractionated conventional brain radiation therapy, followed by temozolomide chemotherapy. Eighteen months later, there was no tumor recurrence and no neurological deficits were noted. Our patient showed no tumor recurrence and a long survival at a long follow-up.

교모세포종에 대한 통합암치료의 치료 효과 증례보고 (A Case Report on the Therapeutic Effect of Integrated Cancer Therapy for Glioblastoma Multiforme)

  • 양진성;장혁준;송시연;박지혜;박소정;유화승
    • 대한한방내과학회지
    • /
    • 제43권2호
    • /
    • pp.320-325
    • /
    • 2022
  • Objective: The purpose of this report is to present the effects of integrative cancer treatment (ICT) on a patient diagnosed with glioblastoma multiforme (GBM). Methods: A 71-year-old male GBM patient received ICT from May 14 to October 12, 2021 and concurrently received temozolomide and radiotherapy. The effect on symptoms was evaluated using a visual analog scale (VAS), and changes in tumor size were assessed using magnetic resonance imaging. Results: After treatment, the VAS score for nausea decreased from 5 to 1, and the tumor size also reduced. Conclusion: ICT could be effective in treating GBM patients by reducing the size of the tumor as well as alleviating the side effects.

Continuous Low-Dose Temozolomide Chemotherapy and Microvessel Density in Recurrent Glioblastoma

  • Woo, Jong-Yun;Yang, Seung Ho;Lee, Youn Soo;Lee, Su Youn;Kim, Jeana;Hong, Yong Kil
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권5호
    • /
    • pp.426-431
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the clinical efficacy of continuous low-dose temozolomide (TMZ) chemotherapy for recurrent and TMZ-refractory glioblastoma multiforme (GBM) and to study the relationship between its efficacy and microvessel density within the tumor. Methods : Thirty patients who had recurrent GBM following Stupp's regimen received TMZ daily at $50mg/m^2/day$ until tumor progression between 2007 and 2013. The median duration of continuous low-dose TMZ administration was 8 weeks (range, 2-64). Results : The median progression-free survival (PFS) of continuous low-dose TMZ therapy was 2 months (range, 0.5-16). At 6 months, PFS was 20%. The median overall survival (OS) from the start of this therapy to death was 6 months (95% CI : 5.1-6.9). Microvessel density of recurrent tumor tissues obtained by reoperation of 17 patients was $22.7{\pm}24.1/mm^2$ (mean${\pm}$standard deviation), and this was lower than that of the initial tumor ($61.4{\pm}32.7/mm^2$) (p-value=0.001). It suggests that standard TMZ-chemoradiotherapy reduces the microvessel density within GBM and that recurrences develop in tumor cells with low metabolic burden. The efficacy of continuous low-dose TMZ could not be expected in recurrent GBM cells in poor angiogenic environments. Conclusion : The efficacy of continuous low-dose TMZ chemotherapy is marginal. This study suggests the need to develop further treatment strategies for recurrent and TMZ-refractory GBM.

Specificity Protein 1 Expression Contributes to Bcl-w-Induced Aggressiveness in Glioblastoma Multiforme

  • Lee, Woo Sang;Kwon, Junhye;Yun, Dong Ho;Lee, Young Nam;Woo, Eun Young;Park, Myung-Jin;Lee, Jae-Seon;Han, Young-Hoon;Bae, In Hwa
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2014
  • We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or ${\beta}$-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.

Glioblastoma Multiforme in the Pineal Region with Leptomeningeal Dissemination and Lumbar Metastasis

  • Matsuda, Ryosuke;Hironaka, Yasuo;Suigimoto, Tadashi;Nakase, Hiroyuki
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권5호
    • /
    • pp.479-482
    • /
    • 2015
  • We report a case of a 31-year-old woman with glioblastoma multiforme (GBM) in the pineal region with associated leptomeningeal dissemination and lumbar metastasis. The patient presented with severe headache and vomiting. Magnetic resonance imaging (MRI) of the brain showed a heterogeneously enhanced tumor in the pineal region with obstructive hydrocephalus. After an urgent ventricular-peritoneal shunt, she was treated by subtotal resection and chemotherapy concomitant with radiotherapy. Two months after surgery, MRI showed no changes in the residual tumor but leptomeningeal dissemination surrounding the brainstem. One month later, she exhibited severe lumbago and bilateral leg pain. Thoracico-lumbar MRI showed drop like metastasis in the lumbar region. Finally she died five months after the initial diagnosis. Neurosurgeons should pay attention to GBM in the pineal region, not only as an important differential diagnosis among the pineal tumors, but due to the aggressive features of leptomeningeal dissemination and spinal metastasis.

Radiation-Induced Glioblastoma Multiforme in a Remitted Acute Lymphocytic Leukemia Patient

  • Joh, Dae-Won;Park, Bong-Jin;Lim, Young-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권3호
    • /
    • pp.235-239
    • /
    • 2011
  • Radiation therapy has been widely applied for cancer treatment. Childhood acute lymphocytic leukemia (ALL), characterized by frequent central nervous system involvement, is a well documented disease for the effect of prophylactic cranio-spinal irradiation. Irradiation, however, acts as an oncogenic factor as a delayed effect and it is rare that glioblastoma multiforme develops during the remission period of ALL. We experienced a pediatric radiation-induced GBM patient which developed during the remission period of ALL, who were primarily treated with chemotherapeutic agents and brain radiation therapy for the prevention of central nervous system (CNS) relapse. Additionally, we reviewed the related literature regarding on the effects of brain irradiation in childhood and on the prognosis of radiation induced GBM.

Should Adjuvant Radiotherapy Be Recommended for Pediatric Craniopharyngiomas?

  • Dadlani, Ravi;Ghosal, Nandita;Hegde, Alangar Sathya
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권1호
    • /
    • pp.54-56
    • /
    • 2014
  • Intracranial tumors secondary to radiotherapy are rare. In this group gliomas are the rarest. Only 6 cases of glioblastoma multiforme (GBM) have been reported in patients undergoing radiotherapy (RT) for craniopharyngiomas of which only 4 have been in children less than 18 years of age. In recent years RT has become a mainstay of adjuvant therapy for recurrent or partially excised craniopharyngiomas. We report a child of 12 years who had previously undergone RT for a suprasellar craniopharyngioma and presented 10 years later with a GBM. This is the 5th pediatric case in literature demonstrating a GBM after RT for a craniopharyngioma. The implications of subjecting the pediatric population to RT for a benign lesion versus the outcome of gross total removal and management of RT induced tumors is discussed and the need to avail of safer alternatives such as stereotactic radiosurgery is stressed.

다형성 교모세포종의 항생제 내성 종양 줄기세포 (Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma)

  • 강미경;강수경
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1039-1045
    • /
    • 2007
  • 다형성 교모세포종은 뇌종양 가운데 가장 빈번하게 발병하는 악성종양이다. 다형성 교모세포종에 종양 줄기세포가 존재한다는 보고가 있음에도 불구하고, 항암제 내성과 종양 줄기세포 사이의 상호 연관성에 관한 연구는 아직 미비한 실정이다. 본 연구에서 다형성 교모세포종 세포주 A172 및 뇌종양 환자로부터 확립한 GBM2에 1,3-bis(2 -chloroethyl)-1-nitrosourea (BiCNU)를 처리시 극소량의 세포군만이 생존하며, 이들 생존 세포군은 BiCNU 재처리에 내성을 나타내는 것으로 조사되었다. 또한 이 다형성 교모세포종 유래 BiCNU-내성세포군의 Erk 및 Akt 인산화 활성이 증가되었으며, CD133 줄기세포 표지인자를 발현하는 세포가 다량 존재하였다. 이와 아울러, 다형성 교모세포종 유래 BiCNU-내성세포를 severe combined immuno-deficient (SCID) mouse brain에 이식하였을 때 암이 형성되는 것을 관찰할 수 있었다. 이와 같은 결과는 다형성 교모세포종 유래 BiCNU-내성세포가 종양줄기세포의 능력을 가지는 것으로 생각된다. 따라서 이상의 결과는 다형성 교모세포종에 존재하는 종양줄기세포가 항암제 내성에 관여 한다는 중요한 단서를 제공해줄 수 있을 것으로 사료된다.

Epigenetic Regulation of miR-129-2 Leads to Overexpression of PDGFRa and FoxP1 in Glioma Cells

  • Tian, Xiang-Yang;Zhang, Ling;Sun, Lai-Guang;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.6129-6133
    • /
    • 2015
  • miR-129-2 is frequently downregulated in multiple cancers. However, how it is silenced in cancers remains unclear. Here we investigated the expression profile and potential biological function of miR-129-2 in glioblastoma (GBM), the most common and lethal form of brain tumors in adults. We showed that miR-129-2 is lost in GBM patient specimens and cultured cell lines. miR-129-2 expression could be restored upon treatment with a histone deadetylase inhibitor (trichostatin A) but not a DNA methylation inhibitor (5-Aza-2'-deoxycytidine), and more profound effect was observed with the treatment of these two drugs in combination. Furthermore, forced expression of miR-129-2 repressed the expression of major oncogenic genes such as PDGFRa and Foxp1 in GBMs. Consistently, expression of miR-129-2 significantly inhibits GBM cell proliferation in vitro. These results reveal that miR-129-2 is epigenetically regulated and functions as a tumor suppressor gene in GBMs, suggesting it may serve as a potential therapeutic target for GBM treatment.

Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats

  • Shin, Ji-Yon;Lee, Jung-Min;Shin, Heon-Sub;Park, Sang-Yong;Yang, Jung-Eun;KimCho, So-Mi;Yi, Tae-Hoo
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.86-92
    • /
    • 2012
  • The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside $F_2$ (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with $IC_{50}$ of 50 ${\mu}g/mL$ through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer.