References
- Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008;359:492-507. https://doi.org/10.1056/NEJMra0708126
- Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol 2007;114:443-458. https://doi.org/10.1007/s00401-007-0293-7
- Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 2005;23:2411-2422. https://doi.org/10.1200/JCO.2005.03.089
- Cheng L, Bao S, Rich JN. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 2010;80:654-665. https://doi.org/10.1016/j.bcp.2010.04.035
- Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1996;62:453-457. https://doi.org/10.1055/s-2006-957938
-
Choi S, Oh JY, Kim SJ. Ginsenoside
$Rh_2$ induces Bcl-2 family proteins-mediated apoptosis in vitro and in xenografts in vivo models. J Cell Biochem 2011;112:330-340. https://doi.org/10.1002/jcb.22932 - Kim SY, Kim DH, Han SJ, Hyun JW, Kim HS. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells. Biochem Pharmacol 2007;74:1642-1651. https://doi.org/10.1016/j.bcp.2007.08.015
- Jung SH, Woo MS, Kim SY, Kim WK, Hyun JW, Kim EJ, Kim DH, Kim HS. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int J Cancer 2006;118:490-497. https://doi.org/10.1002/ijc.21356
- Kruse AJ, Baak JP, Janssen EA, Kjellevold KH, Fiane B, Lovslett K, Bergh J, Robboy S. Ki67 predicts progression in early CIN: validation of a multivariate progression-risk model. Cell Oncol 2004;26:13-20.
- Ye R, Kong X, Yang Q, Zhang Y, Han J, Li P, Xiong L, Zhao G. Ginsenoside rd in experimental stroke: superior neuroprotective effi cacy with a wide therapeutic window. Neurotherapeutics 2011;8:515-525. https://doi.org/10.1007/s13311-011-0051-3
-
Kim YS, Jin SH. Ginsenoside
$Rh_2$ induces apoptosis via activation of caspase-1 and -3 and up-regulation of Bax in human neuroblastoma. Arch Pharm Res 2004;27:834-839. https://doi.org/10.1007/BF02980175 - Rao JS, Steck PA, Mohanam S, Stetler-Stevenson WG, Liotta LA, Sawaya R. Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res 1993;53(10 Suppl):2208-2211.
- Sawaya R, Go Y, Kyritisis AP, Uhm J, Venkaiah B, Mohanam S, Gokaslan ZL, Rao JS. Elevated levels of Mr 92,000 type IV collagenase during tumor growth in vivo. Biochem Biophys Res Commun 1998;251:632-636. https://doi.org/10.1006/bbrc.1998.9466
- Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, Jeon JW, Kim MH, Kang BG, Jung Y et al. Clinical and biological implications of CD133-positive and CD133- negative cells in glioblastomas. Lab Invest 2008;88:808-815. https://doi.org/10.1038/labinvest.2008.57
- Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identifi cation of human brain tumour initiating cells. Nature 2004;432:396-401. https://doi.org/10.1038/nature03128
- Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-760. https://doi.org/10.1038/nature05236
- Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U, Camussi G. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 2006;169:2223-2235. https://doi.org/10.2353/ajpath.2006.060498
Cited by
- Biotransformation, a Promising Technology for Anti-cancer Drug Development vol.14, pp.10, 2013, https://doi.org/10.7314/APJCP.2013.14.10.5599
- Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII vol.36, pp.6, 2014, https://doi.org/10.1007/s10529-014-1472-y
- Characterization of a Ginsenoside-Transforming β-glucosidase from Paenibacillus mucilaginosus and Its Application for Enhanced Production of Minor Ginsenoside F2 vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085727
- Ginseng Purified Dry Extract, BST204, Improved Cancer Chemotherapy-Related Fatigue and Toxicity in Mice vol.2015, pp.1741-4288, 2015, https://doi.org/10.1155/2015/197459
- Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint vol.12, pp.9, 2016, https://doi.org/10.1080/15548627.2016.1192751
- on Human Gastric Carcinoma Cells SGC7901 vol.2016, pp.1741-4288, 2016, https://doi.org/10.1155/2016/2635483
- Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites vol.2016, pp.1741-4288, 2016, https://doi.org/10.1155/2016/5738694
- Targeting cancer stem-like cells using dietary-derived agents - Where are we now? vol.60, pp.6, 2016, https://doi.org/10.1002/mnfr.201500887
- vol.64, pp.12, 2016, https://doi.org/10.1021/acs.jafc.5b04098
- -induced apoptosis in HEK-293 cells via the NF-κB pathway vol.7, pp.66, 2017, https://doi.org/10.1039/C7RA04689H
- A New Application of Charged Aerosol Detection in Liquid Chromatography for the Simultaneous Determination of Polar and Less Polar Ginsenosides in Ginseng Products vol.24, pp.4, 2013, https://doi.org/10.1002/pca.2419
- -Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2018.4180
- Ginsenoside Rp1 Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells vol.36, pp.4, 2012, https://doi.org/10.5142/jgr.2012.36.4.375
- Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae vol.36, pp.4, 2012, https://doi.org/10.5142/jgr.2012.36.4.418
- Quercetin Induces Mitochondrial Mediated Apoptosis and Protective Autophagy in Human Glioblastoma U373MG Cells vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/596496
- A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells vol.4, pp.None, 2012, https://doi.org/10.1038/cddis.2013.273
- Quality and characteristics of ginseng seed oil treated using different extraction methods vol.37, pp.4, 2013, https://doi.org/10.5142/jgr.2013.37.468
- Individual and combined antioxidant effects of ginsenoside F2 and cyanidin-3-O-glucoside in human embryonic kidney 293 cells vol.6, pp.84, 2012, https://doi.org/10.1039/c6ra14831j
- Biosynthesis of Plant Triterpenoid Saponins in Microbial Cell Factories vol.66, pp.46, 2018, https://doi.org/10.1021/acs.jafc.8b04657
- Change of Ginsenoside Profiles in Processed Ginseng by Drying, Steaming, and Puffing vol.29, pp.2, 2012, https://doi.org/10.4014/jmb.1809.09056
- Neuroprotective Effects of Ginsenosides against Cerebral Ischemia vol.24, pp.6, 2019, https://doi.org/10.3390/molecules24061102
- Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
- Comparison of ginsenoside (Rg1, Rb1) content and radical-scavenging activities of wild-simulated ginseng extract with respect to the solvent vol.28, pp.2, 2012, https://doi.org/10.11002/kjfp.2021.28.2.261
- Phnomibacter ginsenosidimutans gen. nov., sp. nov., a novel glycoside hydrolase positive bacterial strain with ginsenoside hydrolysing activity vol.71, pp.5, 2021, https://doi.org/10.1099/ijsem.0.004793