• 제목/요약/키워드: Glioblastoma (GBM)

검색결과 61건 처리시간 0.025초

Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models

  • Lim, Sang-Kyun;Llaguno, Sheila R. Alcantara;McKay, Renee M.;Parada, Luis F.
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.158-164
    • /
    • 2011
  • Gliomas are the most frequently occurring primary malignancies in the central nervous system, and glioblastoma multiforme (GBM) is the most common and most aggressive of these tumors. Despite vigorous basic and clinical studies over past decades, the median survival of patients with this disease remains at about one year. Recent studies have suggested that GBMs contain a subpopulation of tumor cells that displays stem cell characteristics and could therefore be responsible for in vivo tumor growth. We will summarize the major oncogenic pathways abnormally regulated in gliomas, and review the recent findings from mouse models that our laboratory as well as others have developed for the study of GBM. The concept of cancer stem cells in GBM and their potential therapeutic importance will also be discussed.

Roles of Valproic Acid in Improving Radiation Therapy for Glioblastoma: a Review of Literature Focusing on Clinical Evidence

  • Ochiai, Satoru;Nomoto, Yoshihito;Yamashita, Yasufumi;Watanabe, Yui;Toyomasu, Yutaka;Kawamura, Tomoko;Takada, Akinori;Ii, Noriko;Kobayashi, Shigeki;Sakuma, Hajime
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.463-466
    • /
    • 2016
  • Glioblastoma (GBM) is the most common and aggressive type of primary brain neoplasm. The current standard therapy for GBM consists of maximal surgical resection within safe limits, followed by radiation therapy (RT) and chemotherapy with temozolomide. Despite advances in treatment, the prognosis of GBM remains poor. Epileptic seizure is one of the most common symptoms in patients with GBM. Valproic acid (VPA), a histone deacetylase inhibitor, is often used as an anti-epileptic drug in patients with brain neoplasms due to its effectiveness and low toxicity profile. Several in vivo and in vitro studies have indicated that VPA has radiosensitizing effects for gliomas and radioprotective influence on normal brain tissue or hippocampal neurons. The results of several retrospective studies have also indicated potential benefit to improve survival of patients with GBM. Moreover, the promising treatment results of a phase 2 trial of concurrent radiation therapy, temozolomide, and VPA for patients with GBM have been recently reported. The use of VPA in patients with GBM has thus recently receiving more attention. In this article, we review the role of VPA in radiation therapy for GBM, focusing on the clinical evidence.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Evaluation of JC and Cytomegalo Viruses in Glioblastoma Tissue

  • Afshar, Reza Malekpour;Mollaei, Hamid Reza;Zandi, Bahare;Iranpour, Maryam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권11호
    • /
    • pp.4907-4911
    • /
    • 2016
  • Glioblastoma multiforme (GBM) is the most aggressive of the gliomas, a collection of tumors arising from glia in the central nervous system. Possible associations between the human cytomegalovirus (HCMV) and the JC virus with GBM are now attracting interest. Our present aim was to investigate the prevalence of the two viruses in Iranian patients from Kerman's cities in the south of Iran. In addition, the expression rates of pp65, large T antigen and p53 proteins were assessed and their relation with GBM evaluated using reverse transcription real time PCR (rReal Time PCR). A total of 199 patients with GBM cancer were enrolled, with $mean{\pm}SD$ ages of $50.0{\pm}19.5$ and $50.7{\pm}19.6$ years for males and females, respectively. The P53 rate was dramatically low suggesting an aetiological role,. Large T antigen expression was found in JC positive samples, while the PP65 antigen was observed in patients positive for CMV and JC. HCMV products and JC virus with oncogenic potential may induce the development of various tumors including glioblastomas. The JC virus produces an early gene product, T-antigen, which has the ability to associate with and functionally inactivate well-studied tumor suppressor proteins including p53 and pRB.

Lack of Sunlight Exposure Influence on Primary Glioblastoma Survival

  • Mutlu, Hasan;Akca, Zeki;Erden, Abdulsamet;Aslan, Tuncay;Ucar, Kadir;Kaplan, Bunyamin;Buyukcelik, Abdullah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4165-4168
    • /
    • 2014
  • Background: The prognosis of primary glioblastoma (GBM) is poor. Approximately 2/3 of primary brain tumor diagnoses are GBM, of which 95% are primary lesions. In this study, we aimed to evaluate whether more sunlight exposure has an effect on survival of patients with primary GBM. Materials and Methods: A total of 111 patients with primary GBM were enrolled from Kayseri in inner Anatolia which has a cold climate (n: 40) and Mersin in Mediterranean region with a warm climate and more sunlight exposure (n: 71). The patients with primary GBM were divided into two groups as Kayseri and Mersin and compared for progression free survival (PFS) and overall survival (OS).Results: The PFS values were 7.0 and 4.7 months for Kayseri and Mersin groups, respectively (p=0.10) and the repsective OS values were 13.3 and 9.4 months (p=0.13). We did not found any significant difference regarding age, sex, comorbidity, smoking, surgery, resurgery, adjuvant chemoradiotherapy and palliative chemotherapy between the groups. Conclusions: We found that more sunlight exposure had no impact on prognosis of patients with primary GBM, adding inconsistency to the literature about the relationship between sunlight and GBM.

Intraventricular Glioblastoma Multiforme with Previous History of Intracerebral Hemorrhage : A Case Report

  • Kim, Young-Jin;Lee, Sang-Koo;Cho, Maeng-Ki;Kim, Young-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권6호
    • /
    • pp.405-408
    • /
    • 2008
  • GBM is the most common primary brain tumor, but intraventricular GBM is rare and only few cases have been reported in the literature. The authors report a case of 64-year-old man who had a remote history of previous periventricular intracerebral hemorrhage. Brain computed tomography (CT) and magnetic resonance (MR) imaging showed an intraventricular lesion with inhomogeneous enhancement, infiltrative borders and necrotic cyst, and obstructive hydrocephalus. The patient underwent surgical removal through transcortical route via the bottom of previous hemorrhage site and the final pathologic diagnosis was GBM. We present a rare case of an intraventricular GBM with detailed clinical course, radiological findings, and pathological findings, and the possible origin of this lesion is discussed.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

CCDC26 Gene Polymorphism and Glioblastoma Risk in the Han Chinese Population

  • Wei, Xiao-Bing;Jin, Tian-Bo;Li, Gang;Geng, Ting-Ting;Zhang, Jia-Yi;Chen, Cui-Ping;Gao, Guo-Dong;Chen, Chao;Gong, Yong-Kuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3629-3633
    • /
    • 2014
  • Background: Glioblastoma (GBM) is an immunosuppressive tumor whose median survival time is only 12-15 months, and patients with GBM have a uniformly poor prognosis. It is known that heredity contributes to formation of glioma, but there are few genetic studies concerning GBM. Materials and Methods: We genotyped six tagging SNPs (tSNP) in Han Chinese GBM and control patients. We used Microsoft Excel and SPSS 16.0 statistical package for statistical analysis and SNP Stats to test for associations between certain tSNPs and risk of GBM in five different models. ORs and 95%CIs were calculated for unconditional logistic-regression analysis with adjustment for age and gender. The SHEsis software platform was applied for analysis of linkage disequilibrium, haplotype construction, and genetic associations at polymorphism loci. Results: We found rs891835 in CCDC26 to be associated with GBM susceptibility at a level of p=0.009. The following genotypes of rs891835 were found to be associated with GBM risk in four different models of gene action: i) genotype GT (OR=2.26; 95%CI, 1.29-3.97; p=0.019) or GG (OR=1.33; 95%CI, 0.23-7.81; p=0.019) in the codominant model; ii) genotypes GT and GG (OR=2.18; 95%CI, 1.26-3.78; p=0.0061) in the dominant model; iii) GT (OR=2.24; 95%CI, 1.28-3.92; p=0.0053) in the overdominant model; iv) the allele G of rs891835 (OR=1.85; 95%CI, 1.14-3.00; p=0.015) in the additive model. In addition, "CG" and "CGGAG" were found by haplotype analysis to be associated with increased GBM risk. In contrast, genotype GG of CCDC26 rs6470745 was associated with decreased GBM risk (OR=0.34; 95%CI, 0.12-1.01; p=0.029) in the recessive model. Conclusions: Our results, combined with those from previous studies, suggest a potential genetic contribution of CCDC26 to GBM progression among Han Chinese.

Extraneural Metastasis of Glioblastoma Multiforme Presenting as an Unusual Neck Mass

  • Seo, Young-Jun;Cho, Won-Ho;Kang, Dong-Wan;Cha, Seung-Heon
    • Journal of Korean Neurosurgical Society
    • /
    • 제51권3호
    • /
    • pp.147-150
    • /
    • 2012
  • Glioblastoma multiforme(GBM) is the most aggressive intracranial tumor and it commonly spreads by direct extension and infiltration into the adjacent brain tissue and along the white matter tract. The metastatic spread of GBM outside of the central nervous system (CNS) is rare. The possible mechanisms of extraneural metastasis of the GBM have been suggested. They include the lymphatic spread, the venous invasion and the direct invasion through dura and bone. We experienced a 46-year-old man who had extraneural metastasis of the G8M on his left neck. The patient was treated with surgery for 5 times, radiotherapy and chemotherapy. He had survived 6 years since first diagnosed. Although the exact mechanism of the extraneural metastasis is not well understood, this present case shows the possibility of extraneural metastasis of the G8M, especially in patients with long survival.

Effect of glucose level on chemical hypoxia- and hydrogen peroxide-induced chemokine expression in human glioblastoma cell lines

  • Jung, Yieun;Ahn, So-Hee;Park, Sang Hui;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.509-518
    • /
    • 2017
  • Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. The GBM-specific tumor microenvironment (TME) plays a crucial role in tumor progression, immune escape, local invasion, and metastasis of GBM. Here, we demonstrate that hypoxia, reactive oxygen species (ROS), and differential concentration of glucose influence the expression of cytokines and chemokines, such as IL-6, IL-8, and IP-10, in human glial cell lines. Treatment with cobalt chloride ($CoCl_2$) and hydrogen peroxide ($H_2O_2$) significantly increased the expression levels of IL-6, IL-8, and IP-10 in a dose-dependent manner in CRT-MG and U251-MG astroglioma cells, but not in microglia cells. However, we found strikingly different patterns of expression of cytokines and chemokines between $H_2O_2$-treated CRT-MG cells cultured in low- and high-glucose medium. These results suggest that astroglioma and microglia cells exhibit distinct patterns of cytokine and chemokine expression in response to $CoCl_2$ and $H_2O_2$ treatment, and different concentrations of glucose influence this expression under either hypoxic or oxidant-enriched conditions.