DOI QR코드

DOI QR Code

Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models

  • Lim, Sang-Kyun (Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas) ;
  • Llaguno, Sheila R. Alcantara (Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas) ;
  • McKay, Renee M. (Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas) ;
  • Parada, Luis F. (Department of Developmental Biology, The University of Texas Southwestern Medical Center at Dallas)
  • Received : 2011.02.26
  • Published : 2011.03.31

Abstract

Gliomas are the most frequently occurring primary malignancies in the central nervous system, and glioblastoma multiforme (GBM) is the most common and most aggressive of these tumors. Despite vigorous basic and clinical studies over past decades, the median survival of patients with this disease remains at about one year. Recent studies have suggested that GBMs contain a subpopulation of tumor cells that displays stem cell characteristics and could therefore be responsible for in vivo tumor growth. We will summarize the major oncogenic pathways abnormally regulated in gliomas, and review the recent findings from mouse models that our laboratory as well as others have developed for the study of GBM. The concept of cancer stem cells in GBM and their potential therapeutic importance will also be discussed.

Keywords

References

  1. Louis, D. N. (2006) Molecular pathology of malignantgliomas. Annu. Rev. Pathol. 1, 97-117. https://doi.org/10.1146/annurev.pathol.1.110304.100043
  2. Kleihues, P. and Cavenee, W. K. (2000) Pathology andGenetics of Tumours of the Nervous System; in: WorldHealth Organization Classification of Tumors (Kleihues,P. and Sobin, L. H., eds.), IARC Press, Lyon, France.
  3. Maher, E. A., Furnari, F. B., Bachoo, R. M., Rowitch, D.H., Louis, D. N., Cavenee, W. K. and DePinho, R. A.(2001) Malignant glioma: genetics and biology of a gravematter. Genes Dev. 15, 1311-1333. https://doi.org/10.1101/gad.891601
  4. Zhu, Y. and Parada, L. F. (2002) The molecular and geneticbasis of neurological tumours. Nat. Rev. Cancer 2,616-626. https://doi.org/10.1038/nrc866
  5. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M.,Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A.,Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C.,Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D.,Cairncross, J. G., Eisenhauer, E. and Mirimanoff, R. O.(2005) Radiotherapy plus concomitant and adjuvant temozolomidefor glioblastoma. N. Engl. J. Med. 352, 987-996. https://doi.org/10.1056/NEJMoa043330
  6. Ohgaki, H. and Kleihues, P. (2007) Genetic pathways toprimary and secondary glioblastoma. Am. J. Pathol. 170,1445-1453. https://doi.org/10.2353/ajpath.2007.070011
  7. Alcantara Llaguno, S. R., Chen, J. and Parada, L. F. (2009)Signaling in malignant astrocytomas: role of neural stemcells and its therapeutic implications. Clin. Cancer Res.15, 7124-7129. https://doi.org/10.1158/1078-0432.CCR-09-0433
  8. Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A.,Stommel, J. M., Stegh, A., Hahn, W. C., Ligon, K. L.,Louis, D. N., Brennan, C., Chin, L., DePinho, R. A. andCavenee, W. K. (2007) Malignant astrocytic glioma: genetics,biology, and paths to treatment. Genes Dev. 21,2683-2710. https://doi.org/10.1101/gad.1596707
  9. TCGA (2008) Comprehensive genomic characterizationdefines human glioblastoma genes and core pathways.Nature 455, 1061-1068. https://doi.org/10.1038/nature07385
  10. Le, L. Q. and Parada, L. F. (2007) Tumor microenvironmentand neurofibromatosis type I: connecting the GAPs.Oncogene 26, 4609-4616. https://doi.org/10.1038/sj.onc.1210261
  11. Gutmann, D. H., Rasmussen, S. A., Wolkenstein, P.,MacCollin, M. M., Guha, A., Inskip, P. D., North, K. N.,Poyhonen, M., Birch, P. H. and Friedman, J. M. (2002)Gliomas presenting after age 10 in individuals with neurofibromatosistype 1 (NF1). Neurology 59, 759-761. https://doi.org/10.1212/WNL.59.5.759
  12. Cully, M., You, H., Levine, A. J. and Mak, T. W. (2006)Beyond PTEN mutations: the PI3K pathway as an integratorof multiple inputs during tumorigenesis. Nat. Rev.Cancer 6, 184-192. https://doi.org/10.1038/nrc1819
  13. Ichimura, K., Ohgaki, H., Kleihues, P. and Collins, V. P.(2004) Molecular pathogenesis of astrocytic tumours. J.Neurooncol. 70, 137-160. https://doi.org/10.1007/s11060-004-2747-2
  14. The Cancer Genome Atlas Research Network. (2008) Comprehensivegenomic characterization defines human glioblastomagenes and core pathways. Nature 455, 1061-1068. https://doi.org/10.1038/nature07385
  15. Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J.,Angenendt, P., Mankoo, P., Carter, H., Siu, I. M., Gallia, G. L., Olivi, A., McLendon, R., Rasheed, B. A., Keir, S.,Nikolskaya, T., Nikolsky, Y., Busam, D. A., Tekleab, H.,Diaz, L. A., Jr., Hartigan, J., Smith, D. R., Strausberg, R. L.,Marie, S. K., Shinjo, S. M., Yan, H., Riggins, G. J., Bigner,D. D., Karchin, R., Papadopoulos, N., Parmigiani, G.,Vogelstein, B., Velculescu, V. E. and Kinzler, K. W. (2008)An integrated genomic analysis of human glioblastomamultiforme. Science 321, 1807-1812. https://doi.org/10.1126/science.1164382
  16. Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed,B. A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S.,Riggins, G. J., Friedman, H., Friedman, A., Reardon, D.,Herndon, J., Kinzler, K. W., Velculescu, V. E., Vogelstein,B. and Bigner, D. D. (2009) IDH1 and IDH2 mutations ingliomas. N. Engl. J. Med. 360, 765-773. https://doi.org/10.1056/NEJMoa0808710
  17. Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger,M. A., Driggers, E. M., Fantin, V. R., Jang, H. G., Jin,S., Keenan, M. C., Marks, K. M., Prins, R. M., Ward, P. S.,Yen, K. E., Liau, L. M., Rabinowitz, J. D., Cantley, L. C.,Thompson, C. B., Vander Heiden, M. G. and Su, S. M.(2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739-744. https://doi.org/10.1038/nature08617
  18. Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu,W., Li, Z., Gong, L., Peng, Y., Ding, J., Lei, Q., Guan, K.L. and Xiong, Y. (2009) Glioma-derived mutations inIDH1 dominantly inhibit IDH1 catalytic activity and induceHIF-1alpha. Science 324, 261-265. https://doi.org/10.1126/science.1170944
  19. Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F.,Soriano, R. H., Wu, T. D., Misra, A., Nigro, J. M., Colman,H., Soroceanu, L., Williams, P. M., Modrusan, Z.,Feuerstein, B. G. and Aldape, K. (2006) Molecular subclassesof high-grade glioma predict prognosis, delineate apattern of disease progression, and resemble stages inneurogenesis. Cancer Cell 9, 157-173. https://doi.org/10.1016/j.ccr.2006.02.019
  20. Carro, M. S., Lim, W. K., Alvarez, M. J., Bollo, R. J., Zhao,X., Snyder, E. Y., Sulman, E. P., Anne, S. L., Doetsch, F.,Colman, H., Lasorella, A., Aldape, K., Califano, A. andIavarone, A. (2010) The transcriptional network for mesenchymaltransformation of brain tumours. Nature 463,318-325. https://doi.org/10.1038/nature08712
  21. Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi,Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T.,Mesirov, J. P., Alexe, G., Lawrence, M., O'Kelly, M.,Tamayo, P., Weir, B. A., Gabriel, S., Winckler, W., Gupta,S., Jakkula, L., Feiler, H. S., Hodgson, J. G., James, C. D.,Sarkaria, J. N., Brennan, C., Kahn, A., Spellman, P. T.,Wilson, R. K., Speed, T. P., Gray, J. W., Meyerson, M.,Getz, G., Perou, C. M. and Hayes, D. N. (2010) Integratedgenomic analysis identifies clinically relevant subtypes ofglioblastoma characterized by abnormalities in PDGFRA,IDH1, EGFR, and NF1. Cancer Cell 17, 98-110. https://doi.org/10.1016/j.ccr.2009.12.020
  22. Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya,R. E. and Fuller, G. N. (2000) Combined activation of Rasand Akt in neural progenitors induces glioblastoma formationin mice. Nat Genet 25, 55-57. https://doi.org/10.1038/75596
  23. Marumoto, T., Tashiro, A., Friedmann-Morvinski, D.,Scadeng, M., Soda, Y., Gage, F. H. and Verma, I. M.(2009) Development of a novel mouse glioma model usinglentiviral vectors. Nat. Med. 15, 110-116. https://doi.org/10.1038/nm.1863
  24. Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez,N. V., Linehan, J. M., Mirzadeh, Z., O'Malley, C., Naumann, H., Alvarez-Buylla, A. and Brandner, S. (2009)Combinations of genetic mutations in the adult neuralstem cell compartment determine brain tumour phenotypes.EMBO J. 29, 222-235.
  25. Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E.,Chan, S. S., You, M. J., Tang, Y., DeFrances, J., Stover, E.,Weissleder, R., Rowitch, D. H., Louis, D. N. andDePinho, R. A. (2002) Epidermal growth factor receptorand Ink4a/Arf: convergent mechanisms governing terminaldifferentiation and transformation along the neuralstem cell to astrocyte axis. Cancer Cell 1, 269-277. https://doi.org/10.1016/S1535-6108(02)00046-6
  26. Bruggeman, S. W., Hulsman, D., Tanger, E., Buckle, T.,Blom, M., Zevenhoven, J., van Tellingen, O. and vanLohuizen, M. (2007) Bmi1 controls tumor development inan Ink4a/Arf-independent manner in a mouse model forglioma. Cancer Cell 12, 328-341. https://doi.org/10.1016/j.ccr.2007.08.032
  27. Zhu, Y., Guignard, F., Zhao, D., Liu, L., Burns, D. K.,Mason, R. P., Messing, A. and Parada, L. F. (2005) Earlyinactivation of p53 tumor suppressor gene cooperatingwith NF1 loss induces malignant astrocytoma. Cancer cell8, 119-130. https://doi.org/10.1016/j.ccr.2005.07.004
  28. Kwon, C. H., Zhao, D., Chen, J., Alcantara, S., Li, Y.,Burns, D. K., Mason, R. P., Lee, E. Y., Wu, H. and Parada,L. F. (2008) Pten haploinsufficiency accelerates formationof high-grade astrocytomas. Cancer Res. 68, 3286-3294. https://doi.org/10.1158/0008-5472.CAN-07-6867
  29. Tohma, Y., Gratas, C., Biernat, W., Peraud, A., Fukuda,M., Yonekawa, Y., Kleihues, P. and Ohgaki, H. (1998)PTEN (MMAC1) mutations are frequent in primary glioblastomas(de novo) but not in secondary glioblastomas. JNeuropath Exp Neurol 57, 684-689. https://doi.org/10.1097/00005072-199807000-00005
  30. Chen, J., Kwon, C. H., Lin, L., Li, Y. and Parada, L. F.(2009) Inducible site-specific recombination in neuralstem/progenitor cells. Genesis 47, 122-131. https://doi.org/10.1002/dvg.20465
  31. Alcantara Llaguno, S., Chen, J., Kwon, C. H., Jackson, E.L., Li, Y., Burns, D. K., Alvarez-Buylla, A. and Parada, L.F. (2009) Malignant astrocytomas originate from neuralstem/progenitor cells in a somatic tumor suppressormouse model. Cancer Cell 15, 45-56. https://doi.org/10.1016/j.ccr.2008.12.006
  32. Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van denBorn, M., Cozijnsen, M., Haegebarth, A., Korving, J.,Begthel, H., Peters, P. J. and Clevers, H. (2007) Identificationof stem cells in small intestine and colon by markergene Lgr5. Nature 449, 1003-1007. https://doi.org/10.1038/nature06196
  33. Cornelius, J. G., Tchernev, V., Kao, K. J. and Peck, A. B.(1997) In vitro-generation of islets in long-term cultures ofpluripotent stem cells from adult mouse pancreas. HormMetab. Res. 29, 271-277. https://doi.org/10.1055/s-2007-979036
  34. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M.and Alvarez-Buylla, A. (1999) Subventricular zone astrocytesare neural stem cells in the adult mammalianbrain. Cell 97, 703-716. https://doi.org/10.1016/S0092-8674(00)80783-7
  35. Gage, F. H., Coates, P. W., Palmer, T. D., Kuhn, H. G.,Fisher, L. J., Suhonen, J. O., Peterson, D. A., Suhr, S. T.and Ray, J. (1995) Survival and differentiation of adultneuronal progenitor cells transplanted to the adult brain.Proc. Natl. Acad. Sci. U.S.A. 92, 11879-11883. https://doi.org/10.1073/pnas.92.25.11879
  36. Taniguchi, H., Toyoshima, T., Fukao, K. and Nakauchi, H.(1996) Presence of hematopoietic stem cells in the adultliver. Nat. Med. 2, 198-203. https://doi.org/10.1038/nm0296-198
  37. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., Wu, L., Lindeman, G.J. and Visvader, J. E. (2006) Generation of a functionalmammary gland from a single stem cell. Nature 439, 84-88. https://doi.org/10.1038/nature04372
  38. Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence,S., Babar, I., Vogel, S., Crowley, D., Bronson, R. T. andJacks, T. (2005) Identification of bronchioalveolar stemcells in normal lung and lung cancer. Cell 121, 823-835. https://doi.org/10.1016/j.cell.2005.03.032
  39. Cotsarelis, G., Sun, T. T. and Lavker, R. M. (1990)Label-retaining cells reside in the bulge area of pilosebaceousunit: implications for follicular stem cells, hair cycle,and skin carcinogenesis. Cell 61, 1329-1337. https://doi.org/10.1016/0092-8674(90)90696-C
  40. Collins, A. T., Habib, F. K., Maitland, N. J. and Neal, D. E.(2001) Identification and isolation of human prostate epithelialstem cells based on alpha(2)beta(1)-integrin expression.J. Cell Sci. 114, 3865-3872.
  41. Morrison, S. J. and Weissman, I. L. (1994) The long-termrepopulating subset of hematopoietic stem cells is deterministicand isolatable by phenotype. Immunity 1,661-673. https://doi.org/10.1016/1074-7613(94)90037-X
  42. Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright,D. E. and Weissman, I. L. (1997) Identification of a lineageof multipotent hematopoietic progenitors. Development124, 1929-1939.
  43. Morrison, S. J., Wright, D. E., Cheshier, S. H. andWeissman, I. L. (1997) Hematopoietic stem cells: challengesto expectations. Curr. Opin. Immunol. 9, 216-221. https://doi.org/10.1016/S0952-7915(97)80138-0
  44. Tsujimura, A., Koikawa, Y., Salm, S., Takao, T., Coetzee,S., Moscatelli, D., Shapiro, E., Lepor, H., Sun, T. T. andWilson, E. L. (2002) Proximal location of mouse prostateepithelial stem cells: a model of prostatic homeostasis. J.Cell Biol. 157, 1257-1265. https://doi.org/10.1083/jcb.200202067
  45. Goto, K., Salm, S. N., Coetzee, S., Xiong, X., Burger, P. E.,Shapiro, E., Lepor, H., Moscatelli, D. and Wilson, E. L.(2006) Proximal prostatic stem cells are programmed toregenerate a proximal-distal ductal axis. Stem Cells 24,1859-1868. https://doi.org/10.1634/stemcells.2005-0585
  46. Lukacs, R. U., Memarzadeh, S., Wu, H. and Witte, O. N.(2010) Bmi-1 is a crucial regulator of prostate stem cellself-renewal and malignant transformation. Cell Stem Cell7, 682-693. https://doi.org/10.1016/j.stem.2010.11.013
  47. Cameron, H. A., Woolley, C. S., McEwen, B. S. andGould, E. (1993) Differentiation of newly born neuronsand glia in the dentate gyrus of the adult rat. Neuroscience56, 337-344. https://doi.org/10.1016/0306-4522(93)90335-D
  48. Kaplan, M. S. and Hinds, J. W. (1977) Neurogenesis in theadult rat: electron microscopic analysis of light radioautographs.Science 197, 1092-1094. https://doi.org/10.1126/science.887941
  49. Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L.(2001) Stem cells, cancer, and cancer stem cells. Nature414, 105-111. https://doi.org/10.1038/35102167
  50. Kamel-Reid, S., Letarte, M., Sirard, C., Doedens, M.,Grunberger, T., Fulop, G., Freedman, M. H., Phillips, R.A. and Dick, J. E. (1989) A model of human acute lymphoblastic leukemia in immune-deficient SCID mice.Science 246, 1597-1600. https://doi.org/10.1126/science.2595371
  51. Sirard, C., Lapidot, T., Vormoor, J., Cashman, J. D.,Doedens, M., Murdoch, B., Jamal, N., Messner, H.,Addey, L., Minden, M., Laraya, P., Keating, A., Eaves, A.,Lansdorp, P. M., Eaves, C. J. and Dick, J. E. (1996) Normaland leukemic SCID-repopulating cells (SRC) coexist in thebone marrow and peripheral blood from CML patients inchronic phase, whereas leukemic SRC are detected inblast crisis. Blood 87, 1539-1548.
  52. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang,T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri,M. A. and Dick, J. E. (1994) A cell initiating human acutemyeloid leukaemia after transplantation into SCID mice.Nature 367, 645-648. https://doi.org/10.1038/367645a0
  53. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins,C., Squire, J. and Dirks, P. B. (2003) Identification ofa cancer stem cell in human brain tumors. Cancer Res.63, 5821-5828.
  54. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A.,Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D.and Dirks, P. B. (2004) Identification of human brain tumourinitiating cells. Nature 432, 396-401. https://doi.org/10.1038/nature03128
  55. Reynolds, B. A., Tetzlaff, W. and Weiss, S. (1992) A multipotentEGF-responsive striatal embryonic progenitor cellproduces neurons and astrocytes. J. Neurosci. 12, 4565-4574.
  56. Reynolds, B. A. and Weiss, S. (1996) Clonal and populationanalyses demonstrate that an EGF-responsivemammalian embryonic CNS precursor is a stem cell. Dev.Biol. 175, 1-13. https://doi.org/10.1006/dbio.1996.0090
  57. Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir,I. R., Lu, L., Irvin, D., Black, K. L. and Yu, J. S. (2006)Analysis of gene expression and chemoresistance of$CD133^+$ cancer stem cells in glioblastoma. Mol. Cancer5, 67. https://doi.org/10.1186/1476-4598-5-67
  58. Salmaggi, A., Boiardi, A., Gelati, M., Russo, A., Calatozzolo,C., Ciusani, E., Sciacca, F. L., Ottolina, A., Parati, E.A., La Porta, C., Alessandri, G., Marras, C., Croci, D. andDe Rossi, M. (2006) Glioblastoma-derived tumorospheresidentify a population of tumor stem-like cells with angiogenicpotential and enhanced multidrug resistancephenotype. Glia 54, 850-860. https://doi.org/10.1002/glia.20414
  59. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q.,Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D. andRich, J. N. (2006) Glioma stem cells promote radioresistanceby preferential activation of the DNA damageresponse. Nature 444, 756-760. https://doi.org/10.1038/nature05236
  60. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G.,Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F. andVescovi, A. L. (2006) Bone morphogenetic proteins inhibitthe tumorigenic potential of human brain tumour-initiatingcells. Nature 444, 761-765. https://doi.org/10.1038/nature05349

Cited by

  1. A Comparative Study of Primary and Recurrent Human Glioblastoma Multiforme Using the Small Animal Imaging and Molecular Expressive Profiles vol.15, pp.3, 2013, https://doi.org/10.1007/s11307-012-0591-x
  2. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells vol.32, pp.33, 2013, https://doi.org/10.1038/onc.2012.393
  3. Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel vol.427, pp.2, 2012, https://doi.org/10.1016/j.ijpharm.2012.02.012
  4. Hypoxia differentially upregulates the expression of embryonic, fetal and adult hemoglobin in human glioblastoma cells vol.44, pp.3, 2014, https://doi.org/10.3892/ijo.2013.2239
  5. Tricetin suppresses the migration/invasion of human glioblastoma multiforme cells by inhibiting matrix metalloproteinase-2 through modulation of the expression and transcriptional activity of specificity protein 1 vol.19, pp.10, 2015, https://doi.org/10.1517/14728222.2015.1075509
  6. A phase II trial of arsenic trioxide and temozolomide in combination with radiation therapy for patients with malignant gliomas vol.133, pp.3, 2017, https://doi.org/10.1007/s11060-017-2469-x
  7. β-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells vol.2012, 2012, https://doi.org/10.1155/2012/192362
  8. Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth vol.23, pp.7, 2012, https://doi.org/10.1097/CAD.0b013e3283531041
  9. Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients vol.18, pp.9, 2016, https://doi.org/10.1093/neuonc/now051
  10. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain vol.81, 2016, https://doi.org/10.1016/j.biocel.2016.05.002
  11. Phase I study of arsenic trioxide and temozolomide in combination with radiation therapy in patients with malignant gliomas vol.110, pp.2, 2012, https://doi.org/10.1007/s11060-012-0957-6
  12. Effect of Sulforaphane on Growth Inhibition in Human Brain Malignant Glioma GBM 8401 Cells by Means of Mitochondrial- and MEK/ERK-Mediated Apoptosis Pathway vol.63, pp.3, 2012, https://doi.org/10.1007/s12013-012-9360-3
  13. Orexin A Suppresses the Growth of Rat C6 Glioma Cells via a Caspase-Dependent Mechanism vol.48, pp.3, 2012, https://doi.org/10.1007/s12031-012-9799-0
  14. BUB1 and BUBR1 inhibition decreases proliferation and colony formation, and enhances radiation sensitivity in pediatric glioblastoma cells vol.29, pp.12, 2013, https://doi.org/10.1007/s00381-013-2175-8
  15. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells vol.44, pp.2, 2014, https://doi.org/10.3892/ijo.2013.2186
  16. The histone deacetylase inhibitor valproic acid enhances equine herpesvirus type 1 (EHV-1)-mediated oncolysis of human glioma cells vol.20, pp.2, 2013, https://doi.org/10.1038/cgt.2012.89
  17. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization vol.18, pp.6, 2016, https://doi.org/10.1093/neuonc/nov272
  18. Mouse genetics: Catalogue and scissors vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.242
  19. Gene expression profiling analysis reveals that DLG3 is down-regulated in glioblastoma vol.116, pp.3, 2014, https://doi.org/10.1007/s11060-013-1325-x
  20. HIF-2α mediates a marked increase in migration and stemness characteristics in a subset of glioma cells under hypoxia by activating an Oct-4/Sox-2-Mena (INV) axis vol.74, 2016, https://doi.org/10.1016/j.biocel.2016.02.017
  21. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells vol.2012, 2012, https://doi.org/10.1155/2012/396573
  22. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0911-1
  23. Serdemetan Antagonizes the Mdm2-HIF1α Axis Leading to Decreased Levels of Glycolytic Enzymes vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0074741
  24. FAT1 modulates EMT and stemness genes expression in hypoxic glioblastoma vol.142, pp.4, 2017, https://doi.org/10.1002/ijc.31092
  25. Receptor-Targeted Glial Brain Tumor Therapies vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113326
  26. Dietary Polyunsaturated Fat Intake in Relation to Glioma: A Case-Control Study pp.1532-7914, 2018, https://doi.org/10.1080/01635581.2018.1494845
  27. Tripartite motif-containing 14 (TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma cells vol.38, pp.1, 2019, https://doi.org/10.1186/s13046-019-1070-x