DOI QR코드

DOI QR Code

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun (Department of Biomedical Sciences, Ajou Graduate School) ;
  • Yoon, Jeong Seon (Department of Anatomy, Ajou University School of Medicine) ;
  • Chang, Da-Young (Department of Biomedical Sciences, Ajou Graduate School) ;
  • Cho, Kyung Gi (Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine) ;
  • Lim, Jaejoon (Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine) ;
  • Kim, Sung-Soo (Department of Biomedical Sciences, Ajou Graduate School) ;
  • Suh-Kim, Haeyoung (Department of Biomedical Sciences, Ajou Graduate School)
  • Received : 2020.04.12
  • Accepted : 2020.05.08
  • Published : 2020.06.30

Abstract

Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

Keywords

References

  1. Ahn, H.J., Hwang, S.Y., Nguyen, N.H., Lee, I.J., Lee, E.J., Seong, J., and Lee, J.S. (2019). Radiation-induced CXCL12 upregulation via histone modification at the promoter in the tumor microenvironment of hepatocellular carcinoma. Mol. Cells 42, 530-545. https://doi.org/10.14348/molcells.2019.2280
  2. Ahr, B., Denizot, M., Robert-Hebmann, V., Brelot, A., and Biard-Piechaczyk, M. (2005). Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and STAT3 phosphorylation. J. Biol. Chem. 280, 6692-6670. https://doi.org/10.1074/jbc.M408481200
  3. Allen, M., Bjerke, M., Edlund, H., Nelander, S., and Westermark, B. (2016). Origin of the U87MG glioma cell line: good news and bad news. Sci. Transl. Med. 8, 354re3. https://doi.org/10.1126/scitranslmed.aaf6853
  4. Armento, A., Ehlers, J., Schotterl, S., and Naumann, U. (2017). Molecular mechanisms of glioma cell motility. In Glioblastoma, S.D. Vleeschouwer, ed. (Brisbane, Australia: Codon Publications), pp. 73-94.
  5. Bougnaud, S., Golebiewska, A., Oudin, A., Keunen, O., Harter, P.N., Mader, L., Azuaje, F., Fritah, S., Stieber, D., Kaoma, T., et al. (2016). Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget 7, 31955-31971. https://doi.org/10.18632/oncotarget.7454
  6. Burden-Gulley, S.M., Qutaish, M.Q., Sullivant, K.E., Lu, H., Wang, J., Craig, S.E.L., Basilion, J.P., Wilson, D.L., and Brady-Kalnay, S.M. (2011). Novel cryoimaging of the glioma tumor microenvironment reveals migration and dispersal pathways in vivid three-dimensional detail. Cancer Res. 71, 5932-5940. https://doi.org/10.1158/0008-5472.CAN-11-1553
  7. Cheng, L., Huang, Z., Zhou, W., Wu, Q., Donnola, S., Liu, J.K., Fang, X., Sloan, A.E., Mao, Y., Lathia, J.D., et al. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139-152. https://doi.org/10.1016/j.cell.2013.02.021
  8. Delgado-Lopez, P.D., Saiz-Lopez, P., Gargini, R., Sola-Vendrell, E., and Tejada, S. (2020). A comprehensive overview on the molecular biology of human glioma: what the clinician needs to know. Clin. Transl. Oncol. 2020 Mar 28 [Epub]. https://doi.org/10.1007/s12094-020-02340-8
  9. Dello, R.C., Lisi, L., Tentori, L., Navarra, P., Graziani, G., and Combs, C.K. (2017). Exploiting microglial functions for the treatment of glioblastoma. Curr. Cancer Drug Targets 17, 267-281. https://doi.org/10.2174/1568009616666160813191240
  10. Gjorgjevski, M., Hannen, R., Carl, B., Li, Y., Landmann, E., Buchholz, M., Bartsch, J.W., and Nimsky, C. (2019). Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/ macrophage polarization state with metalloprotease expression profiles and survival. Biosci. Rep. 39, BSR20182361. https://doi.org/10.1042/BSR20182361
  11. Graeber, M.B., Scheithauer, B., and Kreutzberg, G. (2002). Microglia in brain tumors. Glia 40, 252-259. https://doi.org/10.1002/glia.10147
  12. Hambardzumyan, D., Gutmann, D.H., and Kettenmann, H. (2016). The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20-27. https://doi.org/10.1038/nn.4185
  13. Hussain, S.F., Yang, D., Suki, D., Aldape, K., Grimm, E., and Heimberger, A.B. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 8, 261-279. https://doi.org/10.1215/15228517-2006-008
  14. Kazda, T., Dziacky, A., Burkon, P., Pospisil, P., Slavik, M., Rehak, Z., Jancalek, R., Slampa, P., Slaby, O., and Lakomy, R. (2018). Radiotherapy of glioblastoma 15 years after the landmark Stupp's trial: more controversies than standards? Radiol. Oncol. 52, 121-128. https://doi.org/10.2478/raon-2018-0023
  15. Kioi, M., Vogel, H., Schultz, G., Hoffman, R.M., Harsh, G.R., and Brown, J.M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694-705. https://doi.org/10.1172/JCI40283
  16. Kostianovsky, A.M., Maier, L.M., Anderson, R.C., Bruce, J.N., and Anderson, D.E. (2008). Astrocytic regulation of human monocytic/microglial activation. J. Immunol. 181, 5425-5432. https://doi.org/10.4049/jimmunol.181.8.5425
  17. Lisi, L., Ciotti, G.M., Braun, D., Kalinin, S., Currò, D., Dello, R.C., Coli, A., Mangiola, A., Anile, C., Feinstein, D.L., et al. (2017). Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 645, 106-112. https://doi.org/10.1016/j.neulet.2017.02.076
  18. Luwor, R.B., Stylli, S.S., and Kaye, A.H. (2013). The role of Stat3 in glioblastoma multiforme. J. Clin. Neurosci. 20, 907-911. https://doi.org/10.1016/j.jocn.2013.03.006
  19. Masuda, J., Shigehiro, T., Matsumoto, T., Satoh, A., Mizutani, A., Umemura, C., Saito, S., Kijihira, M., Takayama, E., Seno, A., et al. (2018). Cytokine expression and macrophage localization in xenograft and allograft tumor models stimulated with lipopolysaccharide. Int. J. Mol. Sci. 19, E1261. https://doi.org/10.3390/ijms19041261
  20. Mueller, A.M., Yoon, B.H., and Sadiq, S.A. (2014). Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem. 289, 22888-22899. https://doi.org/10.1074/jbc.M114.559583
  21. Quail, D.F. and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437. https://doi.org/10.1038/nm.3394
  22. Rao, S., Sengupta, R., Choe, E.J., Woerner, B.M., Jackson, E., Sun, T., Leonard, J., Piwnica-Worms, J., and Rubin, J.B. (2012). CXCL12 mediates trophic interactions between endothelial and tumor cells in glioblastoma. PLoS One 7, e33005. https://doi.org/10.1371/journal.pone.0033005
  23. Thakkar, J.P., Dolecek, T.A., Horbinski, C., Ostrom, Q.T., Lightner, D.D., Barnholtz-Sloan, J.S., and Villano, J.L. (2014). Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev. 23, 1985-1996. https://doi.org/10.1158/1055-9965.EPI-14-0275
  24. Urbanska, K., Sokolowska, J., Szmidt, M., and Sysa, P. (2014). Glioblastoma multiforme: an overview. Contemp. Oncol. (Pozn). 18, 307-312.
  25. Van Meir, E., Sawamura. Y., Diserens, A.C., Ilamou, M.F., and Tribolet, N. (1990). Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res. 50, 6683-6688.
  26. Vila-Coro, A.J., Rodriguez-Frade, J.M., Martin, D.A.A., Moreno-Ortiz, M.C., Martinez-A, C., and Mellado, M. (1999). The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 13, 1699-1710. https://doi.org/10.1096/fasebj.13.13.1699
  27. Walentynowicz, K.A., Ochocka, N., Pasierbinska, M., Wojnicki, K., Stepniak, K., Mieczkowski, J., Ciechomska, I.A., and Kaminska, B. (2018). In search for reliable markers of glioma-induced polarization of microglia. Front. Immunol. 9, 1329. https://doi.org/10.3389/fimmu.2018.01329
  28. Yadav, V.N., Zamler, D., Baker, G.J., Kadiyala, P., Erdreich-Epstein, A., DeCarvalho, A.C., Mikkelsen, T., Castro, M.G., and Lowenstein, P.R. (2016). CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: a genetic knockdown study. Oncotarget 7, 83701-83719. https://doi.org/10.18632/oncotarget.13295
  29. Yu, K.K., Taylor, J.T., Pathmanaban, O.N., Youshani, A.S., Beyit, D., Dutko- Gwozdz, J., Benson, R., Griffiths, G., Peers, I., Cueppens, P., et al. (2018). High content screening of patient-derived cell lines highlights the potential of non-standard chemotherapeutic agents for the treatment of glioblastoma. PLoS One 13, e0193694. https://doi.org/10.1371/journal.pone.0193694
  30. Zeng, Y., Wang, X., Wang, J., Yi, R., Long, H., Zhou, M., Luo, Q., Zhai, Z., Song, Y., and Qi, S. (2018). The tumorgenicity of glioblastoma cell line U87MG decreased during serial in vitro passage. Cell. Mol. Neurobiol. 38, 1245-1252. https://doi.org/10.1007/s10571-018-0592-7
  31. Zhang, L., Alizadeh, D., Van, H.M., Kortylewski, M., Yu, H., and Badie, B. (2009). Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57, 1458-1467. https://doi.org/10.1002/glia.20863

Cited by

  1. Bioinformatic Analyses and Experimental Verification Reveal that High FSTL3 Expression Promotes EMT via Fibronectin-1/α5β1 Interaction in Colorectal Cancer vol.8, 2021, https://doi.org/10.3389/fmolb.2021.762924
  2. Contemporary Mouse Models in Glioma Research vol.10, pp.3, 2020, https://doi.org/10.3390/cells10030712
  3. Advances in Chemokine Signaling Pathways as Therapeutic Targets in Glioblastoma vol.13, pp.12, 2020, https://doi.org/10.3390/cancers13122983
  4. The Inhibitory Effect of miR-345 on Glioma Progression Is Closely Related to circRNA-hsa_circ_0073237 and HDGF vol.210, pp.5, 2020, https://doi.org/10.1159/000518667