• Title/Summary/Keyword: Glial fibrillary acidic protein(GFAP)

Search Result 78, Processing Time 0.027 seconds

Effect of Samryungbaikchul-san on Astrocyte Activation and Apoptosis in Mouse Model of Alzheimer Disease (삼령백출산(蔘笭白朮散)이 Alzheimer's Disease 동물모델의 Astrocyte 활성화 및 Apoptosis에 미치는 영향)

  • Lee, Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.374-380
    • /
    • 2009
  • Samryungbaikchul-san(SRBCS) has been used in oriental medicine for the treatments of gastrointestinal and neurological disorders. Here, potential protective function of SRBCS was investigated in neural tissues in Alzheimer's disease(AD) mouse model. In primary cultured cells from the spinal cord of newborn rats, treatment of ${\beta}$-amyloid peptide elevated cell counts positive to glial fibrillary acidic protein(GFAP) or caspase 3 immunoreactivity, but the co-treatment of SRBCS reduced positive cell counts. In vivo administration of scopolamine, an inhibitor of muscarinic receptor, resulted in increases in the number of glial fibrillary acidic protein(GFAP) and caspase 3-positive cells in hippocampal subfields, which was then decreased by the treatment of SRBCS or acetylcholinesterase inhibitor galathamine. The present data suggest that SRBCS may play a protective role in damaged neural tissues caused by scopolamine treatments in mice.

Immunohistochemical and Immunocytochemical Study about the Glial Fibrillary Acidic Protein in the Tanycytes of the Area Postrema of Bat (박쥐 맨아래구역 띠뇌실막세포의 Glial Fibrillary Acidic Protein에 대한 면역조직화학 및 면역세포화학적 연구)

  • Yang, Young-Chul;Cho, Byung-Pil;Kang, Ho-Suck
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.377-387
    • /
    • 2000
  • There are a few tanycytes between the general ependymal cells lining the ependymal layer of the brain ventricle. These cells are considered as modified ependymal cells which possess a long basal process. Tanycytes are known to have an ability to communicate by absorbing substances from cerebrospinal fluid and transporting them to the blood vessels and/or to the neurons in the CNS. The third and fourth ventricular tanycytes were mainly studied as subjects but it's rare to find reports about the tanycytes of the area postrema. Glial fibrillary acidic protein is an intermediate filament protein that is expressed especially in astrocytes of the CNS. But GFAP is also found in filament of the tanycytes and its process. Therefore this study was carried out for the examination of the GFAP immunoreactive tanycytes lining the area postrema of the bat, and we also examined the ultrastructure of tanycytes using electron microscope. GFAP immunoreactive tanycytes were located in the caudal portion of the fourth ventricle, and especially mainly in the transitional zone between the floor of the caudal fourth ventricle and ependymal layer lining the area postrema. A few GFAP immunoreactive tanycytes were also found in the ependymal layer lining the area postrema, and some groups of tanycytes were found in the ependymal layer of the area postrema near the floor of the caudal fourth ventricle , The processes of tanycytes were stained deeply with anti-GFAP antibody. Especially the GFAP immunoreactive tanycytes lining the area postrema had very long processes that cross the whole width of the area postrema. In the electron microscope, the cell body of ependymal tanycyte was located on the ependymal layer and had a long basal process. Intermediate filaments were observed around the nucleus and well developed in the process of tanycrte. Longitudinal oriented long mitochondria and a few lipid droplets were also found in this process. After immunocytocheical staining, the gold particles were found only in the intermediate filaments. We could not determine the function of the tanycytes in the area postrema. Thus, further investigation is required to determine the functional relationship between the tanycytes and the area postrema in hibernating animal, the bat.

  • PDF

Increased CNTF Expression in the Reactive Astrocyte Following Spinal Cord Injury in Rats (흰쥐에서 척수 손상후 반응성 별아교세포에서의 CNTF 발현 증가)

  • Kim, Chang-Jae;Moon, Se-Ho;Lee, Byung-Ho;Chung, Mee-Young;Chea, Jun-Seuk;Lee, Mun-Yong;Chun, Myung-Hoon
    • The Korean Journal of Pain
    • /
    • v.11 no.2
    • /
    • pp.182-193
    • /
    • 1998
  • Background: Ciliary neurotrophic factor (CNTF), identified as a survival factor for developing peripheral neurons is upregulated by reactive astrocytes in the traumatized tissue and in areas of terminal degeneration after a brain lesion. But in the spinal cord, CNTF is expressed in the non-astrocytic phenotypic, maybe oligodendrocytes. The present study was undertaken to determine the upregulation of CNTF expression in reactive astrocytes following spinal cord lesion in the rat. Methods: Unilateral incision of the dorsal funiculus at the thoracic level was performed and rats were sacrificed on days 3, 7, 14 and 28 postlesion. Western blot analysis, immunocytochemical analysis and double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) were performed after spinal cord lesion. Results: A major band with 24 kDa and additional band of higher molecular weight form were detectable, and the intensity of the 24 kDa immunoreactive band increased up to 14 days postlesion and decreased toward laminectomized control values. CNTF immunoreactivity was markedly upregulated in the injured dorsal funiculus and adjacent gray matter. The time course of CNTF expression is coincident with the appearance of reactive astrocytes in the injured spinal cord. Moreover, double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) revealed that CNTF immunoreactivity was in GFAP immunoreactive astrocytes. Conclusions: These results show that CNTF upregulation occurred in reactive astrocytes following spinal cord lesion, and suggest a role for CNTF in the regulation of astrocytic responses after spinal cord injury.

  • PDF

Scolopendra Pharmacopuncture Ameliorates Behavioral Despair in Mice Stressed by Chronic Restraint

  • Choi, Yu-Jin;Lee, Hwa-Young;Kim, Yunna;Cho, Seung-Hun
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • Introduction: Pharmacopuncture, which combines acupuncture with herbal medicine, is one of the newly developed acupuncture techniques that has recently been put into use. The possible mechanisms of scolopendra pharmacopuncture, as well as its potential effects on depressive symptoms, were investigated in this study by using a mouse model of chronic immobilization stress (CIS). Methods: C57BL/6 male mice were randomly assigned into three groups: mice not stressed with restraint and injected with distilled water, mice stressed with restraint and injected with distilled water, and mice stressed with restraint injected with scolopendra pharmacopuncture at a cervical site. Behavioral tests (an open field test, tail suspension test, and forced swimming test) were carried out after two weeks of CIS and injection treatments. The expression levels of glial fibrillary acidic protein (GFAP) in the hippocampus were determined by using western blot and immunohistochemistry analyses. Results: Mice exposed to CIS showed decreased behavioral activity, while scolopendra pharmacopuncture treatment significantly protected against the depressive-like behaviors induced by CIS. Moreover, scolopendra pharmacopuncture treatment increased GFAP protein levels in the hippocampi of the mice stressed by chronic immobilization. Conclusion: Scolopendra pharmacopuncture has an ameliorating effect on depressive behavior, which is partially mediated through protection against glial loss in the hippocampus.

Glial Fibrillary Acidic Protein Splice Variants in Hepatic Stellate Cells - Expression and Regulation

  • Lim, Michelle Chin Chia;Maubach, Gunter;Zhuo, Lang
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.376-384
    • /
    • 2008
  • The glial fibrillary acidic protein (GFAP) is traditionally used as a marker for astrocytes of the brain, and more recently for the hepatic stellate cells (HSCs) of the liver. Several GFAP splice variants have been previously reported in the astrocytes of the CNS and in the non-myelinating Schwann cells of the PNS. In this study, we investigate whether GFAP splice variants are present in the HSCs and their expression as a function of HSCs activation. Furthermore, the regulation of these transcripts upon treatment with interferon gamma ($IFN-{\gamma}$) will be explored. Using semi-quan-titative RT-PCR and real-time PCR, we examine the expression and regulation of GFAP splice variants in HSCs as well as their respective half-life. We discover that most of the GFAP splice variants ($GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$) found in the neural system are also expressed in quiescent and culture-activated primary HSCs. Interestingly, $GFAP{\alpha}$ is the predominant form in quiescent and culture-activated primary HSCs, while $GFAP{\beta}$, predominates in the SV40-immortalized activated HSC-T6. $GFAP{\delta}$, ${\varepsilon}$ and ${\kappa}$ have similar half-lives of 10 hours, while $GFAP{\beta}$ has a half-life of 17 hours. Treatment of HSC-T6 with $IFN-{\gamma}$ results in a significant 1.29-fold up-regulation of $GFAP{\alpha}$ whereas the level of the other transcripts remains unchanged. In summary, $GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$ are present in HSCs. They are differentially regulated on the transcription level, implying a role of the 5' and 3' untranslated regions.

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF

A Role of Serum-Based Neuronal and Glial Markers as Potential Predictors for Distinguishing Severity and Related Outcomes in Traumatic Brain Injury

  • Lee, Jae Yoon;Lee, Cheol Young;Kim, Hong Rye;Lee, Chang-Hyun;Kim, Hyun Woo;Kim, Jong Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.93-100
    • /
    • 2015
  • Objective : Optimal treatment decision and estimation of the prognosis in traumatic brain injury (TBI) is currently based on demographic and clinical predictors. But sometimes, there are limitations in these factors. In this study, we analyzed three central nervous system biomarkers in TBI patients, will discuss the roles and clinical applications of biomarkers in TBI. Methods : From July on 2013 to August on 2014, a total of 45 patients were included. The serum was obtained at the time of hospital admission, and biomarkers were extracted with centrifugal process. It was analyzed for the level of S-100 beta (S100B), glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1). Results : This study included 33 males and 12 females with a mean age of 58.5 (19-84) years. TBI patients were classified into two groups. Group A was severe TBI with Glasgow Coma Scale (GCS) score 3-5 and Group B was mild TBI with GCS score 13-15. The median serum concentration of S100B, GFAP, and UCH-L1 in severe TBI were raised 5.1 fold, 5.5 fold, and 439.1 fold compared to mild injury, respectively. The serum levels of these markers correlated significantly with the injury severity and clinical outcome (p<0.001). Increased level of markers was strongly predicted poor outcomes. Conclusion : S100B, GFAP, and UCH-L1 serum level of were significantly increased in TBI according to severity and associated clinical outcomes. Biomarkers have potential utility as diagnostic, prognostic, and therapeutic adjuncts in the setting of TBI.

From Gut to Brain: Alteration in Inflammation Markers in the Brain of Dextran Sodium Sulfate-induced Colitis Model Mice

  • Do, Jongho;Woo, Jungmin
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.422-433
    • /
    • 2018
  • Objective: Neuropsychiatric manifestations like depression and cognitive dysfunction commonly occur in inflammatory bowel disease (IBD). In the context of the brain-gut axis model, colitis can lead to alteration of brain function in a bottom-up manner. Here, the changes in the response of the hypothalamic-pituitary-adrenal axis and inflammation-related markers in the brain in colitis were studied. Methods: Dextran sodium sulfate (DSS) was used to generate a mouse model of colitis. Mice were treated with DSS for 3 or 7 days and sacrificed. We analyzed the gene expression of brain-derived neurotrophic factor (BDNF), cyclooxygenase 2 (COX-2), and glial fibrillary acidic protein (GFAP), and the expression of GFAP, in the hippocampus, hypothalamus, and amygdala. Additionally, the levels of C-reactive protein (CRP) and serum cortisol/corticosterone were measured. Results: Alteration of inflammatory-related markers varied depending on the brain region and exposure time. In the hippocampus, COX-2 mRNA, GFAP mRNA, and GFAP expression were upregulated during exposure to DSS. However, in the hypothalamus, COX-2 mRNA was upregulated only 3 days after treatment. In the amygdala, BDNF and COX-2 mRNAs were downregulated. CRP and corticosterone expression increased with DSS treatment at day 7. Conclusion: IBD could lead to neuroinflammation in a bottom-up manner, and this effect varied according to brain region. Stress-related hormones and serum inflammatory markers, such as CRP, were upregulated from the third day of DSS treatment. Therefore, early and active intervention is required to prevent psychological and behavioral changes caused by IBD, and region-specific studies can help understand the precise mechanisms by which IBD affects the brain.

Recurrent Extraventricular Neurocytoma with Malignant Glial Differentiation - Case Report - (악성신경교 분화를 보이는 재발성 뇌실외 신경세포종 - 증례보고-)

  • Chang, In-Bok;Park, Se-Hyuck;Hwang, Hyung-Sik;Kim, Duck-Hwan;Nam, Eun Sook;Cho, Byung-Moon;Shin, Dong-Ik;Oh, Sae-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.4
    • /
    • pp.522-527
    • /
    • 2001
  • We present a case of recurrent extraventricular neurocytoma with malignant glial differentiation in left temporoparietal area. A 37-year-old man with presentation of generalized seizure had undergone biopsy of brain tumor in left parietal area in 1987, which revealed extraventricular neurocytoma and radiotherapy was followed. Postoperative course was uneventful until eleven years after biopsy, when he became gradually aphasic and right hemiplegic. Brain CT and MRI revealed enlargement of tumor with peritumoral edema and calcifications. He underwent subtotal tumor removal in 1998. Microscopic examination of second biopsy specimen revealed presence of large areas composed of anaplastic glial cells with frequent mitosis, nuclear pleomorphism, large eosinophilic cytoplasm and eccentric nuclei, resembling gemistocytes, which were strongly immunoreactive to glial fibrillary acidic protein(GFAP) but not to synaptophysin(SNP). Also focal areas of neuronal cells were found, which were immunoreactive to SNP but not to GFAP. These histologic findings imply that this recurred tumor was a high grade, mixed tumor with divergent differentiation of neuronal and astrocyte lineage. We report a rare case of extraventricular cerebral neurocytoma with malignant glial differentiation with review of the literature.

  • PDF

GFAP IMMUNOREACTIVITY IN TRIGEMINAL GANGLION SATELLITE CELLS AFTER PULP EXPOSURE IN RAT (흰쥐에서 치수노출 후 삼차신경절의 신경절아교세포에서 GFAP-IR의 변화)

  • Kim, Heung-Jung;Moon, Joo-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.782-791
    • /
    • 1997
  • Glial fibrillary acidic protein(GFAP) are a group of intermediate filaments that are distributed in the cytoplasm of many type of glial cells. The purpose of this study was to determine change of GFAP immunoreactivity(GFAP-IR) in rat trigeminal ganglion satellite cells in response to pulp exposure. The immunohistochemistry was carried out using the avidinbiotin-peroxidase complex(ABC) method and subsequently stained with AEC(3-aminoethyl-9-carbasol). 1. Contol group; Central root astrocytes had strong GFAP-IR, but ganglion satellite cells occasionlly had GFAP-IR. This reaction patterns of ganglion satellite cells was not concenturated in any specific region of trigeminal ganglion. 2. Three day pulp exposure group; There was a highly GFAP-IR in satellite cells of trigeminal ganglion in maxillary region. GFAP-IR in neighboring mandibular and ophthalmic regions was less intense compared to maxillary region. 3. Seven day pulp exposure group; In this group, GFAP-IR that was increased compared to control group was seen in the maxillary region. But GFAP-IR was less intense compared to three day pulp exposure group. These results suggest that GFAP in satellite cell increase in specific region of trigeminal ganglion after pulp exposure and offer useful tool in trigeminal pain research.

  • PDF