• 제목/요약/키워드: Glenoid version

검색결과 6건 처리시간 0.016초

Comparative study of glenoid version and inclination using two-dimensional images from computed tomography and three-dimensional reconstructed bone models

  • Choi, Chang-Hyuk;Kim, Hee-Chan;Kang, Daewon;Kim, Jun-Young
    • Clinics in Shoulder and Elbow
    • /
    • 제23권3호
    • /
    • pp.119-124
    • /
    • 2020
  • Background: This study was performed to compare glenoid version and inclination measured using two-dimensional (2D) images from computed tomography (CT) scans or three-dimensional (3D) reconstructed bone models. Methods: Thirty patients who had undergone conventional CT scans were included. Two orthopedic surgeons measured glenoid version and inclination three times on 2D images from CT scans (2D measurement), and two other orthopedic surgeons performed the same measurements using 3D reconstructed bone models (3D measurement). The 3D-reconstructed bone models were acquired and measured with Mimics and 3-Matics (Materialise). Results: Mean glenoid version and inclination in 2D measurements were -1.705° and 9.08°, respectively, while those in 3D measurements were 2.635° and 7.23°. The intra-observer reliability in 2D measurements was 0.605 and 0.698, respectively, while that in 3D measurements was 0.883 and 0.892. The inter-observer reliability in 2D measurements was 0.456 and 0.374, respectively, while that in 3D measurements was 0.853 and 0.845. Conclusions: The difference between 2D and 3D measurements is not due to differences in image data but to the use of different tools. However, more consistent results were obtained in 3D measurement. Therefore, 3D measurement can be a good alternative for measuring glenoid version and inclination.

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • 제23권2호
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.

한국인 60~70대의 정상 견갑골 관절와의 크기 (Normal Glenoid Size of the Korean in 7th and 8th Decades)

  • 문영래;하상호;노경환
    • Clinics in Shoulder and Elbow
    • /
    • 제11권1호
    • /
    • pp.37-40
    • /
    • 2008
  • 목적: 전산화단층촬영을 이용하여 한국인 60, 70대의 정상 견갑골 관절와의 크기를 평가하고자 하였다. 대상 및 방법: 견갑골의 손상이 없는 것으로 확인된 상완골 골절에서 시행된 견관절 전산화단층촬영 결과를 대상으로 하였다. 환자는 총 25명으로 남자가 14명, 여자가 11명이었다. 환자의 연령은 62세에서 76세 사이였으며, 평균 연령은 68.8세였다. 사용한 소프트 웨어는 Display workstation version 2.03.73.315 였으며 견관절 관절와의 최대 상하 및 전후방 직경을 측정하였다. 결과: 측정된 견관절 관절와의 최대 상하 직경은 평균 31.2 mm ($27{\sim}34\;mm$)였으며, 최대 전후방 직경은 평균 26.1 mm ($22{\sim}31\;mm$)였다. 결론: 이러한 결과는 다른 국제 학술지의 보고와는 다른 양상으로 국내 환자의 골절 치료 및 인공 관절 모델을 개발하는데 중요한 인자가 될 것으로 보인다.

Mixed reality visualization in shoulder arthroplasty: is it better than traditional preoperative planning software?

  • Sejla Abdic;Nicholas J. Van Osch;Daniel G. Langohr;James A. Johnson;George S. Athwal
    • Clinics in Shoulder and Elbow
    • /
    • 제26권2호
    • /
    • pp.117-125
    • /
    • 2023
  • Background: Preoperative traditional software planning (TSP) is a method used to assist surgeons with implant selection and glenoid guide-pin insertion in shoulder arthroplasty. Mixed reality (MR) is a new technology that uses digital holograms of the preoperative plan and guide-pin trajectory projected into the operative field. The purpose of this study was to compare TSP to MR in a simulated surgical environment involving insertion of guide-pins into models of severely deformed glenoids. Methods: Eight surgeons inserted guide-pins into eight randomized three-dimensional-printed severely eroded glenoid models in a simulated surgical environment using either TSP or MR. In total, 128 glenoid models were used and statistically compared. The outcomes compared between techniques included procedural time, difference in guide-pin start point, difference in version and inclination, and surgeon confidence via a confidence rating scale. Results: When comparing traditional preoperative software planning to MR visualization as techniques to assist surgeons in glenoid guide pin insertion, there were no statistically significant differences in terms of mean procedure time (P=0.634), glenoid start-point (TSP=2.2±0.2 mm, MR=2.1±0.1 mm; P=0.760), guide-pin orientation (P=0.586), or confidence rating score (P=0.850). Conclusions: The results demonstrate that there were no significant differences between traditional preoperative software planning and MR visualization for guide-pin placement into models of eroded glenoids. A perceived benefit of MR is the real-time intraoperative visibility of the surgical plan and the patient's anatomy; however, this did not translate into decreased procedural time or improved guide-pin position.

Patient-specific Guides Using 3-dimensional Reconstruction Provide Accuracy and Reproducibility in Reverse Total Shoulder Arthroplasty

  • Yoon, Jong Pil;Kim, Dong Hyun;Jung, Jae Wook;Lee, Chang-Hwa;Min, Seunggi;Lee, Hyun Joo;Kim, Hee-June
    • Clinics in Shoulder and Elbow
    • /
    • 제22권1호
    • /
    • pp.16-23
    • /
    • 2019
  • Background: We aimed to evaluate whether the use of our novel patient-specific guide (PSG) with 3-dimensional reconstruction in reverse total shoulder arthroplasty (RTSA) would allow accurate and reliable implantation of the glenoid and humeral components. Methods: 20 fresh-frozen cadaveric shoulders were used. The PSG group (n=10) and conventional group (n=10) was evaluated the accuracy and reproducibility of implant positioning between before and after surgery on the computed tomography image. Results: The superoinferior and anteroposterior offset in the glenoid component were $0.42{\pm}0.07$, $0.50{\pm}0.08$ in the conventional group and $0.45{\pm}0.03$, $0.46{\pm}0.02$ in the PSG group. The inclination and version angles were $-1.93^{\circ}{\pm}4.31^{\circ}$, $2.27^{\circ}{\pm}5.91^{\circ}$ and $0.46^{\circ}{\pm}0.02^{\circ}$, $3.38^{\circ}{\pm}2.79^{\circ}$. The standard deviation showed a smaller difference in the PSG group. The anteroposterior and lateromedial humeral canal center offset in the humeral component were $0.45{\pm}0.12$, $0.48{\pm}0.15$ in the conventional group and $0.46{\pm}0.59$ (p=0.794), $0.46{\pm}0.06$ (p=0.702) in the PSG group. The PSG showed significantly better humeral stem alignment. Conclusions: The use of PSGs with 3-dimensional reconstruction reduces variabilities in glenoid and humerus component positions and prevents extreme positioning errors in RTSA.

Ten technical aspects of baseplate fixation in reverse total shoulder arthroplasty for patients without glenoid bone loss: a systematic review

  • Reinier W.A. Spek;Lotje A. Hoogervorst;Rob C. Brink;Jan W. Schoones;Derek F.P. van Deurzen;Michel P.J. van den Bekerom
    • Clinics in Shoulder and Elbow
    • /
    • 제27권1호
    • /
    • pp.88-107
    • /
    • 2024
  • The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clinical, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was performed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11 biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate fixation.