• Title/Summary/Keyword: Glassy phase

Search Result 70, Processing Time 0.02 seconds

Ablation Behavior of ZrB2-SiC UHTC Composite under Various Flame Angle Using Oxy-Acetylene Torch (산소-아세틸렌 토치의 조사각이 ZrB2-SiC UHTC 복합체 삭마 특성에 미치는 영향)

  • Seung Yong Lee;Jung Hoon Kong;Jung Hwan Song;Young Il Son;Do Kyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.553-559
    • /
    • 2022
  • In this work, the ablation behavior of monolith ZrB2-30 vol%SiC (Z30S) composites were studied under various oxy-acetylene flame angles. Typical oxidized microstructures (SiO2/SiC-depleted/ZrB2-SiC) were observed when the flame to Z30S was arranged vertically. However, formation of the outmost glassy SiO2 layer was hindered when the Z30S was tilted. The SiC-depleted region was fully exposed to air with reduced thickness when highly tilted. Traces of the ablated and island type SiO2 were observed at intermediate flame angles, which clearly verified the effect of flame angle on the ablation of the SiO2 layer. Furthermore, the observed maximum surface temperature of the Z30S gradually increased up to 2,200 ℃ proving that surface amorphous silica was continuously removed while monoclinic ZrO2 phase began to be exposed. A proposed ablation mechanism with respect to flame angles is discussed. This observation is expected to contribute to the design of complex-shaped UHTC applications for hypersonic vehicles and re-entry projectiles.

Shock Metamorphism of Plagioclase-maskelynite in the Lunar Meteorite Mount DeWitt 12007 (달운석 Mount DeWitt 12007의 마스컬리나이트 충격 변성 특성 연구)

  • Kim, Hyun Na;Park, Changkun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 2016
  • Detailed knowledge on maskelynite, a glassy phase of plagioclase found in shocked meteorites and impact craters, is essential to understand a shock metamorphism. Here, we explore an inhomogeneous shock metamorphism in the lunar meteorite Mount DeWitt (DEW) 12007 with an aim to understand the formation mechanism of maskelynite. Most plagioclase grains in the DEW 12007 partially amorphized into maskelynite with a unidirectional orientation. Back-scattered electron (BSE) images of maskelynite show a remnant of planar deformation fracture possibly indicating that the maskelynite would be formed by solid-state transformation(i.e., diaplectic glass). Plagioclase with flow texture is also observed along the rim of maskelynite, which would be a result of recrystallization of melted plagioclase. Results of Raman experiments suggest that shock pressure for plagioclase and maskelynite in the DEW 12007 is approximately 5-32 GPa and 26-45 GPa, respectively. The difference in shock pressures between plagioclase and maskelynite can be originated from 1) external factors such as inhomogeneous shock pressure and/or 2) internal factors such as chemical composition and porosity of rock. Unfortunately, Raman spectroscopy has a limitation in revealing the detailed atomic structure of maskelynite such as development of six- or five-coordinated aluminum atom upon various shock pressure. Further studies using nuclear magnetic resonance spectroscopy are necessary to understand the formation mechanism of maskelynite under high pressure.

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers (화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향)

  • Lee, Sujeong;Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.3-11
    • /
    • 2014
  • Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.

Fabrication and Physical Properties of Tiles Recycled Waste Glass (폐유리를 재활용한 타일 제조 및 물리적 특성)

  • Kim, Young-Kil;Jung, Yeon-Gil;Song, Jun-Baek;Shin, Min-Chul;Lee, Hee-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.193-197
    • /
    • 2005
  • Wall and floor tiles were fabricated by a dry pressing method using waste glass and clay. The physical properties of the tiles such as absorption, bulk density, porosity, compressive strength, and abrasion loss are investigated with the firing temperature and glass contents. The physical properties are improved with increasing the firing temperature and glass contents. The composition containing the glass of $70 wt%$ and fired at $1050^{\circ}C$ for 2 h has the good properties. The optimal properties obtained in the tiles are the water absorprion of about $0.9\%$, the bulk density of about $2.3\;g/cm^3$, the apparent porosity of about $2.1 \%$, the compressive strength of about 210 MPa, and the abrasion loss of about 0.022 g, when the composition containing the glass of $70\;wt\%$ is fired at $1050^{\circ}C$. The physical proper1ies of tiles fabricated were enhanced compared to the commercial clay tiles, due to easy melting and densification of glassy phase during the firing process.

Sustainable Block Copolymer-based Thermoplastic Elastomers (지속 가능한 블록 공중합체 기반 열가소성 탄성체)

  • Shin, Jihoon;Kim, Young-Wun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow's sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.

Bending Strength Properties of SiC Ceramics at Different Roughness Values of Polishing Plates (연마판의 거칠기에 따르는 SiC 세라믹스의 굽힘강도 특성)

  • Nam, Ki-Woo;Kim, Eun-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.779-784
    • /
    • 2011
  • This study was carried out on the crack healing of three types of SiC ceramics based on a $SiO_2$ additive, taking into account the roughness of the polishing plate used for polishing the specimens. The mixtures were subsequently hot-pressed in $N_2$ gas for one hour under 35 MPa at 2053 K. In these specimens, the optimized crack-healing condition was 1373 K for one hour in air. The crack-healing material of the cracked part was the glassy phase of $SiO_2$ that was formed by the oxidation of SiC. In the optimum healing condition, the bending strength of non-polished SiC ceramics was not completely recovered. However, the bending strength of the SAY specimen was excellent, considering the economic aspects of SAY, SAYS-1, and SAYS-2. The SAY specimen is definitely superior to the others after an hour of heat treatment. There was a decrease in the number and size of defects in the specimen polished by using a $125-{\mu}m$ polishing plate; however, the micro-surface defects were not completely repaired. The specimen polished by using a 40-${\mu}m$ polishing plate showed little voids or surface defects after an hour of heat treatment. The bending strength of the specimen mirror-polished by using a 6-${\mu}m$ polishing plate was completely recovered.

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Effect of V2O3 and CaO Concentrations on the Viscosity of 5-Component Petcoke Slag (V2O3와 CaO의 농도에 따른 5-성분계 석유코크스 슬래그의 점도 변화)

  • Yang, Yoonjung;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.688-696
    • /
    • 2020
  • Petroleum coke (petcoke) is widely used, next to coal, as a gasification feedstock. In gasification processes, the viscosity of the ash and the formation of crystalline phases must be understood to ensure the continuous removal of slag. This study investigates the effect of CaO and V2O3 on petcoke slag viscosity. The viscosity of the molten slag was measured in the temperature range of 1100~1600 ℃ while varying the concentration of each component. The crystalline phases formed in a cooled slag were examined. The most slag samples tested in this study exhibited crystalline slag behavior. The increased CaO concentration resulted in a lower viscosity and a lower Tcv. The viscosity behavior changed from the glassy to crystalline slag and also showed a higher Tcv as the concentration of V2O3 increases. Most slag samples showed different crystalline phases from top to bottom. Anorthites and Ca-V phases were observed in the top and middle section, while the bottom section mainly showed V2O3 and anorthite. The vanadium in the ash forms Ca-V and V-Fe phases and also remains in molten slag. A low melting Ca-V phase can contribute to lowering the viscosity.

Crystal Populations Within a Porphyritic Dike in Ulleung Island: Are All Clinopyroxenes in the Stage I Dodong Basalt Sectored? (울릉도 반정질 암맥의 결정군집: 화산단계 I 도동현무암의 모든 단사휘석은 섹터누대를 가지는가?)

  • Munkhbayar, Enkhjin;Park, Jongkyu;Jang, Yun-Deuk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.277-291
    • /
    • 2021
  • A mineral phase contained in a rock sample can be categorized into several crystal populations with distinct origins and crystal growth histories. A detailed textural and mineralogical investigation on a clinopyroxene megacryst-bearing porphyritic dike with glassy chilled margins (tachylyte) in the southeastern Ulleung Island was conducted to decipher its crystal populations. During this study, we have measured glass and mineral major element compositions using electron microprobe analyzer. Tachylyte has a homogeneous trachyandesitic composition without any significant alteration characteristics, suggesting that its composition may represent the original melt composition of the dike. Clinopyroxene and plagioclase larger than 0.5 mm are antecrysts equilibrated with a more primitive melt composition than trachyandesitic tachylyte. Meanwhile, clinopyroxene and plagioclase microlites (<0.5mm) are regarded as primocrysts crystallized in-situ. According to our results, all clinopyroxenes in the Stage I Dodong Basalt are sectored into basal and prismatic parts, whose compositional ranges systematically vary: [Mg+Si+Fe]basal ↔ [Al+Ti+Na]prism. Therefore, we suggest that the effect of the elemental partitioning caused by the clinopyroxene sector zonation in Stage I volcanism should be considered in the future works.

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang (밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물)

  • Koo, Hyo Jin;Jang, Jeong Kyu;Do, Jin Young;Jeong, Gi Young;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.473-483
    • /
    • 2018
  • Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.