• 제목/요약/키워드: Glassy carbon electrode

검색결과 170건 처리시간 0.022초

유리질 탄소전극에서 양극벗김 네모파 전압-전류법에 의한 생체내 미량 수은의 정량 (Determination of Bio-Accumulated Trace Mercury by Anodic Stripping Square Wave Voltammetry at Glassy Carbon Electrode)

  • 김일광;천현자;정승일;백승화;한완수
    • 대한화학회지
    • /
    • 제45권4호
    • /
    • pp.298-303
    • /
    • 2001
  • 생체시료에 함유된 미량수은을 유리질 탄소전극을 사용하는 양극 벗김 네모파 전압-전류법으로 정량하였다. 생체시료는 HNO3/H2SO4 산혼합용액으로 삭히고, KMnO4를 가하여 산화시켰다. 수은의 검출한계는 석출전위, 시 간, pH, 그리고 용액을 저어주는 속도 등에 크게 영향을 받았다. 1.0 volts vs. Ag/AgCl에서 400rpm으로 저어주면서 240 sec 동안 석출시켰을 경우, 검출한계는 0.5 ppb 이하였다. 흰쥐에 대한 수은의 생체 축적량은 신장과 간에서 높았고, 뇌에서는 매우 낮았다.

  • PDF

Nafion-ethylenediamine이 수식된 유리탄소전극에 의한 시차펄스전압전류법으로 철(II) 이온의 정량 (Differential Pulse Voltammetric Determination of Iron(II) ion with a Nafion-Ethylenediamine Modified Glassy Carbon Electrode)

  • 김경원;김희철;김성현;박병호;김연희;김경남;고영춘
    • 대한화학회지
    • /
    • 제47권2호
    • /
    • pp.115-120
    • /
    • 2003
  • Perfluorinated sulfonated polymer(Nafion)-ethylenediamine(en)이 화학수식된 유리탄소전극으로 Fe(II) 이온의 정량에 대해 연구하였다. Fe(II) 이온의 착화제인 en을 nafion에 고정시켜 유리탄소전극 표면에 수식하면 이 수식전극의 en은 Fe(II) 이온과 $[Fe(en)_3]^{+2}$의 착물을 형성한다. Nafion-en이 화학수식된 유리탄소전극에서 시차펄스전압전류법에 의한 Fe(II) 이온의 산화봉우리전위는 0.340${\pm}$0.015 V(vs. Ag/AgCl), 측정범위는 $5{\times}10^{-6}{\sim}0.2{\times}10^{-3} M(0.28{\sim}11.17 mg/L)$, 검출한계(3s)는 $1.89{\times}10^{-5}$M(1.056 mg/L)이었다.

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

Electrosynthesis and Electrochemical Properties of Metal Oxide Nano Wire/ P-type Conductive Polymer Composite Film

  • Siadat, S.O. Ranaei
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권3호
    • /
    • pp.81-87
    • /
    • 2015
  • This study introduces a facile strategy to prepare metal oxide/conducting polymer nanocomposites that may have promising applications in energy storage devices. Ploy aniline/nano wire manganese dioxide (PANI/NwMnO2) was synthesized by cyclic voltammetry on glassy carbon electrode. Morphology and structure of the composite, pure PANI, MnO2 nanowires were fully characterized using XRD and SEM analysis. Electrochemical studies shows excellent synergistic effect between PANI and MnO2 nanowires which results in its capacitance increase and cycle stability against PANI electrode. Specific capacitances of PANI/NwMnO2 and PANI were 456 and 190 F/g respectively. The electrochemical performance of electrodes studied using cyclic voltammetry, Galvanostatic charge/discharge and impedance spectroscopy.

DEVELOPMENT OF ANODIC STRIPPING VOLTAMMETRY FOR THE DETERMINATION OF PALLADIUM IN HIGH LEVEL NUCLEAR WASTE

  • Bhardwaj, T.K.;Sharma, H.S.;Jain, P.C.;Aggarwal, S.K.
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.939-944
    • /
    • 2012
  • Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, $10^{-8}$ and $10^{-7}M$, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes

  • Park, Hyun;Kwon, Tae-guen;Park, Deog-Su;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1763-1768
    • /
    • 2006
  • The application of poly(Co(II)-(1,8-diaminonaphthalene))(poly(Co-DAN)) and poly(1,8-diaminonaphthalene) (Poly(1,8-DAN)) to the electrocatalytic reduction of molecular oxygen was investigated, which were electrochemically grown by the potential cycling method on the glassy carbon electrodes. The reduction of oxygen at the polymer and its metal complex polymer coated electrodes were irreversible and diffusion controlled. The Poly(1,8-DAN) and Poly(Co-DAN) films revealed the potential shifts for the oxygen reduction to 30 mV and 110 mV, respectively, in an aqueous solution, compared with that of the bare electrode. Hydrodynamic voltammetry with a rotating ring-disk electrode showed that Poly(1,8-DAN) and Poly(Co-DAN) coated electrodes converted respectively 84% and 22% of $O_2$ to $H_2O$ via a four electron reduction pathway.

NaBH4 화학적 처리를 통한 백금화 카본 전극의 촉매반응 향상 (Enhanced Electrocatalytic Activity of Platinized Carbon Electrode via NaBH4 Treatment)

  • 윤창석;황성필
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.581-584
    • /
    • 2020
  • The effect of a chemical pretreatment on the surface carbon was investigated using a scanning electron microscope (SEM) and electrochemical methods. Primitive carbon has a reducing power likely due to incompletely oxidized functional groups on the surface. We aim to control this reducing power by chemical treatment and apply for the spontaneous deposition of nanoparticles (NPs). Highly ordered pyrolytic graphite (HOPG) was initially treated with a reducing agent, NaBH4 or an oxidizing agent, KMnO4, for 5 min. Subsequently, the pretreated carbon was immersed in a platinum (Pt) precursor. Unexpectedly, SEM images showed that the reducing agent increased spontaneous PtNPs deposition while the oxidizing agent decreased Pt loading more as compared to that of using bare carbon. However, the amount of Pt on the carbon obviously decreased by NaBH4 treatment for 50 min. Secondly, spontaneous reduction on pretreated glassy carbon (GC) was investigated using the catalytic hydrogen evolution reaction (HER). GC electrode treated with NaBH4 for a short and long time showed small (onset potential: -640 mV vs. MSE) and large overpotential for the HER, respectively. Although the mechanism is unclear, the electrochemistry results correspond to the optical data. As a proof-of-concept, these results demonstrate that chemical treatments can be used to design the shapes and amounts of deposited catalytic metal on carbon by controlling the surface state.

휴대용 고농도 과산화수소 측정 전극의 개발 (Development of Portable-Type Electrode for the Determination of Highly Concentrated Hydrogen Peroxide)

  • 이진서;최강;김상진;차근식;남학현;노경래;김진두
    • 분석과학
    • /
    • 제12권2호
    • /
    • pp.125-129
    • /
    • 1999
  • 고농도의 과산화수소(10-75%)를 생산현장에서 손쉽게 측정할 수 있는 전극 센서 시스템을 연구하였다. Teflon 전극체는 휴대에 간편하도록 길이 10 cm, 지금 1.5 cm의 봉 형태로 제작하였고, 작업 극으로는 직경 3 mm의 glassy carbon을, 보조전극으로는 내경 5 mm, 외경 9 mm의 흑연을 전극물질로 사용하였다. 과산화수소 산화전위는 0.8 V의 전위를 걸어주었다. 공장에서 생산된 고농도의 과산화수소를 일정 이온강도의 전해질 용액으로 희석해 10% 이하의 농도가 되도록 하면 과산화수소에 첨가된 안정제의 방해작용과 과산화수소의 산화작용으로 인한 전극표면의 변성을 최소화할 수 있었고, 손쉽게 정량적인 측정을 할 수 있었다. 또한 과산화수소 투과막(teflon membrane${\leq}100{\mu}m$)을 입힌 전극을 이용하면 고농도의 과산화수소를 희석하지 않고 재현성 있게 정량할 수 있었다. 반면 투과막을 이용하는 방법을 내부전해질을 자주 교환해야 하는 단점이 있었다.

  • PDF

Electrodeposition of Graphene-Zn/Al Layered Double Hydroxide (LDH) Composite for Selective Determination of Hydroquinone

  • Kwon, Yeonji;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1755-1762
    • /
    • 2013
  • A graphene-Zn/Al layered double hydroxide composite film was simultaneously prepared by electrochemical deposition on the surface of a glassy carbon electrode (G-LDH/GCE) from the mixture solution containing GO and nitrate salts of $Zn^{2+}$ and $Al^{3+}$. The modified electrode showed good electrochemical performances toward the simultaneous electrochemical detection of hydroquinone (HQ), catechol (CA) and resorcinol (RE) due to the unique properties of graphene (G) and LDH such as large active surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of G-LDH/GCE were investigated with cyclic voltammetry and differential pulse voltammetry. The well-separated oxidation peak potentials, corresponding to the oxidation of HQ, CA and RE, were observed at 0.126 V, 0.228 V and 0.620 V respectively. The amperometric response of the modified electrode exhibited that HQ can be detected without interference of CA and RE. Under the optimized conditions, the oxidation peak current of HQ is linear with the concentration of HQ from 6.0 ${\mu}M$ to 325.0 ${\mu}M$ with the detection limit of 0.077 ${\mu}M$ (S/N=3). The modified electrode was successfully applied to the direct determination of HQ in a local tap water, showing reliable recovery data.

Heterogeneous Electron Transfer at Polyoxometalate-modified Electrode Surfaces

  • Choi, Su-Hee;Seo, Bo-Ra;Kim, Jong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.104-111
    • /
    • 2010
  • The heterogeneous electron transfer at $SiMo_{12}O_{40}^{4-}$ monolayers on GC, HOPG, and Au electrode surfaces are investigated using cyclic voltammetric and electrochemical impedance spectroscopic (EIS) methods. The electron transfer of negatively charged $Fe(CN)_6^{3-}$ species is retarded at $SiMo_{12}O_{40}^{4-}$-modified electrode surfaces, while that of positively charged $Ru(NH_3)_6^{3+}$species is accelerated at the modified surfaces. This is due to the electrostatic interactions between $SiMo_{12}O_{40}^{4-}$ layers on surfaces and charged redox species. The electron transfer kinetics of a neutral redox species, 1,1‘-ferrocenedimethanol (FDM), is not affected by the modification of electrode surfaces with $SiMo_{12}O_{40}^{4-}$, indicating the $SiMo_{12}O_{40}^{4-}$ monolayers do not impart barriers to electron transfer of neutral redox species. This is different from the case of thiolate SAMs which always add barriers to electron transfer. The effect of $SiMo_{12}O_{40}^{4-}$ layers on the electron transfer of charged redox species is dependent on the kind of electrodes, where HOPG surfaces exhibit marked effects. Possible mechanisms responsible for different electron transfer behaviors at $SiMo_{12}O_{40}^{4-}$ layers are proposed.