• 제목/요약/키워드: Glass substrate

검색결과 1,665건 처리시간 0.036초

Poling Field Effect on Absorption and Luminescence of Disperse Red-19 and TiO2 Composites

  • Kim, Byoung-Ju;Hwang, Un-Jei;Jo, Dong-Hyun;Lim, Sae-Han;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.5-9
    • /
    • 2015
  • Absorption and luminescence characteristics of disperse red-19 (DR-19) and $TiO_2$ composite have been investigated with various poling electric field strengths. Two step synthetic processes were employed to employ the DR-19 to the $TiO_2$ sol-gel. Firstly, urethane bond formation between DR-19 (-OH) and 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) performed (ICPDR) prior incorporation to the $TiO_2$ sol-gel. Secondary, the hydrolysis of the ethoxy group from the ICPTES and condensation reaction between silanol groups from ICPTES and $TiO_2$ sol-gel were performed. The ICPDR and $TiO_2$ sol-gel ($DRTiO_2$) were mixed and stirred for several days. The composite was coated to the ITO coated glass substrate. Corona poling were performed before drying the composite with various electric field strengths. The absorption intensity decreased with the increase of the poling field strength, which resulted in the increase of poling efficiency. The photoluminescence also decreased as the poling field strength increased. There is long luminescence tail for the poled $DRTiO_2$ film compared with unpoled $DRTiO_2$ film. The luminescence long tail indicates that the self-trapped excitons and polarons were generated when the $DRTiO_2$ film was poled with electric field.

Study of COD Removal Efficiency from Synthetic Wastewater by Photocatalytic Process

  • Rojviroon, Orawan;Rojviroon, Thammasak;Sirivithayapakorn, Sanya
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.255-259
    • /
    • 2014
  • In this research, we compared the COD removal efficiencies of titanium dioxide ($TiO_2$) thin films coated on the surfaces of borosilicate glass that prepared by three different numbers of coating layer; i) 3 layers ii) 4 layers and iii) 5 layers by sol-gel method. All of the prepared $TiO_2$ thin films consisted of pure anatase crystalline structure with grain sizes in the range 20-250 nm. The calculated optical band gaps of the $TiO_2$ thin films were 3.24. The total apparent surface area per total weight of $TiO_2$ thin films were 4.74, 3.86 and $2.79m^2g^{-1}$ for 3, 4 and 5 layers coating, respectively. The kinetics of the photodegradation reactions of COD under UVA light source were described by the Langmuir-Hinshelwood (L-H) kinetic model. The specific rates of the photodegradation of $TiO_2$ thin films at 3 layers coating was $1.40{\times}10^{-4}min^{-1}mW^{-1}$, while for the 4 layers coating and the 5 layers coating were $1.50{\times}10^{-4}$ and $4.60{\times}10^{-4}min^{-1}mW^{-1}$, respectively. The photocatalytic performance of COD degradation was higher with smaller grain size, higher surface area and narrow optical band gaps. Moreover, the numbers of coating layer on substrate also have great influence for kinetic of COD removal.

TiO2/SiOxCy 이중 박막을 이용한 투명 친수성/내마모성 반사방지 코팅 (Anti-Reflective Coating with Hydrophilic/Abraion-Resistant Properties using TiO2/SiOxCy Double-Layer Thin Film)

  • 이성준;이민교;박영춘
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.345-351
    • /
    • 2017
  • A double-layered anti-reflective coating with hydrophilic/abrasion-resistant properties was studied using anatase titanium dioxide($TiO_2$) and silicon oxycarbide($SiO_xC_y$) thin film. $TiO_2$ and $SiO_xC_y$ thin films were sequentially deposited on a glass substrate by DC sputtering and PECVD, respectively. The optical properties were measured by UV-Vis-NIR spectrophotometer. The abrasion-resistance and the hydrophilicity were observed by a taber abrasion tester and a contact angle analyzer, respectively. The $TiO_2/SiO_xC_y$ double-layer thin film had an average transmittance of 91.3%, which was improved by 10% in the visible light region (400 to 800 nm) than that of the $TiO_2$ single-layer thin film. The contact angle of $TiO_2/SiO_xC_y$ film was $6.9^{\circ}$ right after UV exposure. After 9 days from the exposure, the contact angle was $10.2^{\circ}$, which was $33^{\circ}$ lower than that of the $TiO_2$ single-layer film. By the abrasion test, $SiO_xC_y$ film showed a superior abrasion-resistance to the $TiO_2$ film. Consequently, the $TiO_2/SiO_xC_y$ double-layer film has achieved superior anti-reflection, hydrophilicity, and abrasion resistance over the $TiO_2$ or $SiO_xC_y$ single-layer film.

이온빔 조사 각도와 에너지강도에 의한 수직 배향막의 특성 분석 (Characteristic Analysis of Vertical Alignment by Ion-beam Irradiation Angle and Energy Density)

  • 강동훈;오병윤;김병용;한진우;김영환;옥철호;한정민;이상극;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.398-398
    • /
    • 2007
  • The Liquid Crystal (LC) alignment uniformity is very important in LC devices. The alignment mechanism of LC molecules on a rubbed polyimide (PI) surface is very important for both LC fundamental research and application. So, Generally a rubbing method to align LC has been widely used to mass-produce LCD panels. But because rubbing method is contact method between rubbing fabric and indium-tin-oxide glass or flexible substrate, rubbing method has some defects, such as the electrode charges and the creation of contaminating particles. Thus we strongly recommend a non-contact alignment technique for getting rid of some defects of rubbing method. Most recently, the LC aligning capabilities achieved by ion-beam exposure on the organic and nonorganic thin film surface have been reported successfully. In this research, we studied the tilt angle generation and electro-optical performances for a NLC on homeotropic polyimide surfaces with ion-beam exposure. The LC aligning capabilities of a nematic liquid crystal (NLC) on a homeotropic PI surface using a new ion-beam method were studied. On the homeotropic PI surface, the tilt angle of the NLC by exposure ion-beam had a tendency to decrease as increased ion-beam energy density. And, on the homeotropic PI surface, the alignment character of the NLC with respect to ion-beam energy was good. And we achieved satisfactory result for EO character.

  • PDF

자계 유도 고상결정화를 이용한 다결정 실리콘 박막 트랜지스터의 채널 길이와 드레인 전압에 따른 문턱 전압 변화 (Effect of Channel Length and Drain Bias on Threshold Voltage of Field Enhanced Solid Phase Crystallization Polycrystalline Thin Film Transistor on the Glass Substrate)

  • 강동원;이원규;한상면;박상근;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1263-1264
    • /
    • 2007
  • 자계 유도 고상결정화(FESPC)를 이용하여 제작한 다결정실리콘(poly-Si) 박막 트랜지스터(TFT)는 비정질 실리콘 박막 트랜지스터(a-Si:H TFT)보다 뛰어난 전기적 특성과 우수한 안정성을 지닌다. $V_{DS}$ = -0.1 V에서 채널 폭과 길이가 각각 $5\;{\mu}m$, $7\;{\mu}m$인 P형 TFT의 이동도(${\mu}$)와 문턱 전압($V_{TH}$)은 각각 $31.98\;cm^2$/Vs, -6.14 V 이다. FESPC TFT는 일반 poly-Si TFT에 비해 채널 내 결정 경계 숫자가 많아서 상대적으로 열악한 특성을 가진다. 채널 길이 $5\;{\mu}m$인 TFT의 $V_{TH}$는 채널 길이 $18\;{\mu}m$ 소자의 $V_{TH}$보다 1.36V 작지만, 일반적으로 큰 값이다. 이 현상은 채널에 다수의 결정 경계가 존재하고, 수평 전계가 크기 때문이다. 수평 전계가 증가하면, 결정 경계의 전위 장벽 높이가 감소하게 되는데, 이는 DIGBL 효과이다. ${\mu}$의 증가에 따라서, 드레인 전류가 증가하고 $V_{TH}$은 감소한다. 활성화 에너지($E_a$)는 드레인 전압과 결정 경계의 수에 따라 변하는데, 드레인 전압이 크거나 결정 경계의 수가 감소하면 $E_a$는 감소한다. $E_a$가 감소하면 $V_{TH}$가 감소한다. 유리기판 위의 FESPC를 이용한 P형 poly-Si TFT의 $V_{TH}$는 채널의 길이와 $V_{DS}$에 영향을 받는다. 증가한 수평 전계가 결정 경계에서 에너지 장벽을 낮추는 효과를 일으키기 때문이다.

  • PDF

란탄계 금속 착화합물을 이용한 다양한 유기 전기 발광 소자의 연구 (A Study on the Various Organic Electroluminescent Devices Using Lanthanide Chelate Metal Complexes)

  • 표상우;김윤명;이한성;김정수;이승희;김영관
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.437-443
    • /
    • 2000
  • In this study several lanthanide complexes such as Eu(TTA)$_3$(Phen), Tb(ACAC)$_3$-(Cl-Phen) were synthesized and the white-light electroluminescence(EL) characteristics of their thin films were investigated where the devices having structures of anode/TPD/Tb(ACAC)$_3$(Cl-Phen)/Eu(TTA)$_3$(Phen)/Alq$_3$or Bebq$_2$/cathode and the low work function metal alloy such as Li:Al was used as the electron injecting electrode(cathode). Device structure of glass substrate/ITO/TPD(30nm)/Tb(ACAC)$_3$(Phen)(30nm)/Eu(TTA)$_3$(Phen)(6nm)/DCM doped Alq$_3$(10nm)/Alq$_3$(20nm)/Li:Al(100nm) was also fabricated and their EL characteristics were investigated where Eu(TTA)$_3$(Phen) and DCM doped Alq$_3$were used as red light-emitting materials. It was found that the turn-on voltage of the device with non-doped Alq$_3$was lower than that of the devices with doped Alq$_3$and the blue and red light emission peaks due to TPD and Eu(TTA)$_3$(Phen) with non-doped Alq$_3$were lower than those with DCM doped Alq$_3$Details on the white-light-emitting characteristics of these device structures were explained by the energy and diagrams of various materials used in these structure where the energy levels of new materials such as ionization potential(IP) and electron affinity(EA) were measured by cyclic voltametric method.

  • PDF

DAAQ와 SPEEK를 이용한 전고상 슈퍼커패시터의 전기화학적 특성 (Electrochemical Characteristics of all solid supercapacitor based on DAAQ(1,5-diaminoanthraquinone) and SPEEK(sulfonated polyether ether ketone))

  • 김진용;김홍일;김한주;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.371-372
    • /
    • 2005
  • Supercapacitors are promising devices for delivering high power density. Digital communications, electric vehicles and other devices that require electrical energy at high power levels in relatively short pulses have prompted considerable research on supercapacitors. In recent years, solid electrolytes have been investigated for supercapacitors. Solid electrolytes are advantageous over liquid electrolytes in respect of easy handling and reliability without electrolyte leakage. In this preliminary study, an electrochemical supercapacitor in all solid configuration has been fabricated using CNF-DAAQ and poly-vinylidenefluoride(PVdF). A new type of Supercapacitor was constructed by using carbon nanofibers(CNFs) and DAAQ(l,5-diaminoanthraquinone) monomer. DAAQ was deposited on the carbon nanofibers by chemical polymerization with $(NH_4)_2S_2O_8$ as oxidant in the 0.1M $H_2SO_4$. Dried SPEEK powder was mixed with N-methyl pyrrolidone to make 10 wt.% solution in an ultrasonic bath, the slurry was cast over a glass substrate heated to $70^{\circ}C$ for solvent evaporation. And then we used solid electrolyte of SPEEK. The unit cell consist of DAAQ-CNF/electrolyte/Pt. From the analysis, it is clear that surface of carbon nanofibers was quite uniformly coated with DAAQ. The performance characteristics of the supercapacitors have been evaluated using Cyclic Voltammetry.

  • PDF

DC, RF Magnetron Sputtering 공법을 이용한 다층 $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ 진주안료용 필름의 광학적 특성 (The Optical Properties of $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ Multi-layered Pearl-pigment films by DC, RF Magnetron Sputtering)

  • 이남일;장건익;정재일;조성윤;장길완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.448-449
    • /
    • 2006
  • For the possible applicative pearl pigment, multi-layered $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ thin film was deposited on glass substrate by using sputtering method. $TiO_2$ and Al or Cr was selected as a possible high and low refraction materials at the film interface respectively. Optical properties including color effect were systematically studied in terms of different film thickness and film layers by using spectrometer. In order to expect the experimental results, the simulation program, the Essential Macleod Program(EMP) was adopted and compared with the experimental data. The film consisting of $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ layers show the wavelength range of 430 - 760nm, typically color ranges between bluish purple and red. It was confirmed that this experimental result was quite well matched with the experimental one.

  • PDF

Cu/In 비에 따른 CuInS2 박막의 특성에 관한 연구 (A Study on Properties of CuInS2 Thin Films by Cu/ln Ratio)

  • 양현훈;박계춘
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.594-599
    • /
    • 2007
  • [ $CulnS_2$ ] thin films were synthesized by sulfurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature $200^{\circ}C$. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the annealed $200^{\circ}C$ of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. The compositional deviations from the ideal chemical formula for $200^{\circ}C$ material can be conveniently described by non-molecularity$({\Delta}x=[Cu/In]-1)$ and non-stoichiometry $({\Delta}y=[{2S/(Cu+3In)}-1])$. The variation of ${\Delta}x$ would lead to the formation of equal number of donor and accepters and the films would behave like a compensated material. The ${\Delta}y$ parameter is related to the electronic defects and would determine the type of the majority charge carriers. Films with ${\Delta}y>0$ would behave as p-type material while ${\Delta}y<0$ would show n-type conductivity. At the sane time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}cm^{-3},\;312.502cm^2/V{\cdot}s\;and\;2.36{\times}10^{-2}\;{\Omega}{\cdot}cm$, respectively.

Atomic Layer Deposition으로 증착된 Al-doped ZnO Film의 전기적, 구조적 및 광학적 특성 분석 (Electrical, Structural and Optical Characteristic Analysis of Al-doped ZnO Film Deposited by Atomic Layer Deposition)

  • 임정수;정광석;신홍식;윤호진;양승동;김유미;이희덕;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.491-496
    • /
    • 2011
  • Al-doped ZnO film on glass substrate is deposited by ALD in low temperature, using 4-step process (DEZ-$H_2O$-TMA-$H_2O$). To find out the optimal film condition for TCO material, we fabricate Al-doped ZnO films by increasing Al doping concentration at $100^{\circ}C$, so that the Al-doped film of 5 at% shows the lowest resistivity ($1.057{\times}10^{-2}{\Omega}{\cdot}cm$) and the largest grain size (38.047 nm). Afterwards, the electrical and physical characteristics in Al-doped films of 5 at% are also compared in accordance with increasing deposition temperature. All the films show the optical transmittance over 80% and the film deposited at $250^{\circ}C$ demonstrates the superior resistivity ($1.237{\times}10^{-4}{\Omega}{\cdot}cm$).