• Title/Summary/Keyword: Glass ionomer cements

Search Result 105, Processing Time 0.018 seconds

COMPARATIVE STUDY OF PHYSICAL PROPERTIES FOR VARIOUS BAND CEMENTS (수종의 밴드 접착 시멘트의 물성에 대한 비교 연구)

  • Yang, Kyu-Ho;Kim, Ki-Baek;Kim, Seon-Mi;Choi, Nam-Ki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.427-432
    • /
    • 2009
  • The aim of this study was to compare the shear-peel strength and the fracture site of 5 commercially available orthodontic band cements. One hundred molar bands were cemented to extracted human 3rd molars. The specimens were prepared in accordance with the manufacturer's instructions for each cement. After storage in a humidor at $37^{\circ}C$ for 24 hours, the shear debonding force was assessed for each specimen using an universal testing machine with crosshead speed of 2 mm/minute. Maximal failure stress was converted to mean shear-peel strength, MPa. The predominant site of band failure was recorded visually for all specimens as either at the band/cement or cement/enamel interface. Mean shear-peel strength of Ormco was the highest(2.44${\pm}$0.57), followed by Fuji $Ortho^{TM}$(2.24${\pm}$0.50), $Ketac-Cem^{TM}$(2.10${\pm}$0.57), 3M $Unitek^{TM}$(1.82${\pm}$0.43), $Band-Lok^{TM}$(1.73${\pm}$0.28). There were statistically significant differences between Ormco and $Band-Lok^{TM}$, Ormco and 3M $Unitek^{TM}$, and Fuji $Ortho^{TM}$ and $Band-Lok^{TM}$(p<0.05). The predominant site of bonding failure for bands cemented with the Ormco was at the band/cement interface, whereas bands cemented with Ultra $Band-Lok^{TM}$ failed predominantly at the enamel/cement interface. There was no significant difference among the other cements(Fuji $Ortho^{TM}$, 3M $Unitek^{TM}$, $Ketac-Cem^{TM}$).

  • PDF

Tissue response of Pro-Root® MTA with rhBMP-2 in pulpotomized rat teeth (백서에서 치수 절단술 시행 시 Pro-Root® MTA 단독 사용군과 rhBMP-2 혼용 사용군 간의 조직 반응 비교 연구)

  • Park, Kyung-Tae;Yang, Won-Kyung;Ko, Hyun-Jung;Kim, Mi-Ri
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.403-410
    • /
    • 2007
  • The purpose of this study was to investigate whether rhBMP-2 (BMP2) could induce synergistic effect with $Pro-Root^{(R)}$ MTA (MTA) in pulpotomized teeth in the rats. Healthy upper first molars from thirty-two, 10 weeks old, Sprague-Dawley rats were used for this investigation. The molars were exposed with round bur, and light pressure was applied with sterilized cotton to control hemorrhage. 1.2 grams of MTA cement was placed in right first molars as a control group. In left first molars, $1\;{\mu}g$ of BMP2 was additionally placed on exposed pulps with MTA. All cavities were back-filled with light-cured glass-ionomer cements. The rats were sacrificed after 2 weeks and 7 weeks, respectively. Then histologic sections were made and assessed by light microscopy. Data were statistically analyzed via student t-test with SPSSWIN 12.0 program (p < 0.05). Inflammation observed in 2 weeks groups were severe compared to the 7 weeks groups. But the differences were not statistically significant. BMP2-addition groups had less inflammation than MTA groups in both periods, though these differences were also not statistically significant. In conclusion, the combination of BMP2 and MTA showed no differences with MTA only for pulpotomy of rat teeth.

Characterization of the Stresses in the Luting Cement Layer Affected by Location of the Occlusal Points and Loading Direction on a Full Veneer Crown (유한요소법을 이용한 전부주조관의 교합점 위치와 하중방향이 시멘트층 내 응력에 미치는 영향)

  • Lee, Jung-Hoon;Lee, Kyu-Bok;Lee, Cheong-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2008
  • The objective of this study was to test effects of (1) where the occlusal contact points locate on a full veneer crown, and (2) which direction the contact forces are directed to, on the stresses within the luting cement layer that might suffer microfracture. A total of 27 finite element models were created for a mandibular first molar, combining 9 different locations of the occlusal contact points and 3 different loading directions. Type 3 gold alloy was used for crown material with a chamfer margin, and the luting cement material was glass ionomer cements in uniform thickness of $75{\mu}m$. Modeled crowns were loaded at 100 N. Different patterns in the cement stress were observed in the vicinity of the buccal and lingual margins. Whereas, the peak stress in buccal margin occurred approximately 0.5 mm away from the external surface, the highest stress in lingual margin was observed at approximately 1 mm. Significantly different distribution of stresses was recorded as a function either of the location of the occlusal contact points or of the loading direction. Higher stresses were produced by more obliquely acting load, and when the loaded point was in the vicinity of the cusp tip.

A STUDY ON THE BOND OF AESTHETIC RESTORATIVE MATERIALS TO FLUORIDE TREATED ROOT DENTIN (불소처리된 치근상아질에 대한 심미수복재의 결합에 관한 연구)

  • Tak, Heung-Soo;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Ki-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.197-212
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of fluoride application on the aspect of shear bond strength of three aesthetic restorative materials to dentin. One light-cured composite resin(Palfique Esterite) and two light-cured glass ionomer cements(Fuji II LC and Compoglass)were used in this study. 120 permanent molars were used for this study. The teeth were extracted due to the origin of periodontal disease. The crowns of all teeth were removed, and the remaining roots were embedded in epoxy resin. The mesial or distal surfaces of roots were ground flat to expose dentin and polished on wet 320-, 400-, and 600 grit SIC papers for a total of 120 prepared flat root dentin surfaces. The prepared samples were divided into six groups. Group 1, 3, and 5 were control groups and group 2, 4, and 6 were experimental groups. Sixty samples for experimental groups were treated with 2% NaF solution for 5 minutes. Group 1 and 2 were bonded with Plafique Esterite, group 3 and 4 were bonded with Fuji II LC, and group 5 and 6 were bonded with Compoglass. After 24 hours water storage at $37{\pm}1^{\circ}C$, all samples were subjected to a shear to fracture with Instron universal testing machine(No.4467) at 1.0 mm/min displacement rate. Dentin surfaces treated with each conditioners before bonding and interfacial layers between dentin and aesthetic restorative materials were observed under Scanning Electron Microscope(Hitachi S-2300) at 20Kvp. The data were evaluated statistically at the 95% confidence level with ANOVA test. The result were as follows; 1. Among the control groups, group 1 showed strongest bond strength and group 3 showed weakest. 2. Among the experimental groups, group 2 showed strongest bond strength and group 6 showed weakest. 3. Statistical analysis of the data showed that pretreatment of dentin with 2% NaF solution significantly decreased the bond strength of three aesthetic restorative materials to dentin(P<0.05). 4. SEM findings of fluoride treated dentin surfaces (2, 4, 6 group) demonstrated dentin surfaces covered with fluoridated reaction products. 5. Except group 4 and 6, resin tags were formed in all groups.

  • PDF

TEMPERATURE CHANGE IN THE PULP ACCORDING TO POLISHING CONDITION OF VARIOUS RESTORATIVE MATERIALS (여러가지 수복물의 polishing조건에 따른 치수 온도변화)

  • Baik, Byeong-Ju;Park, Jong-Ha;Yang, Jeong-Suk;Lee, Seung-Young;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.365-376
    • /
    • 1999
  • The importance of finishing and polishing the restoration has been described by several authors. The final step provides for improved metallurgical properties, better marginal adaptation, reduced plaque accumulation. Unfortunately, finishing of the restorations can produce damage from temperature rises at the pulpal wall. The aim of this study was to determine the changes in temperature can be occurred during the use of finishing and polishing instruments under a variety of conditions. ; with or without a water coolant, intermittent or continuous operation, high or low rotation speed, remaining dentin thickness and various restorative materials. Class V preparations were cut on extracted molars and restored with composite resin(Z 100), resin-modified glass ionomer cements(Dyract, Fuji II LC), and amalgam. Finishing was done with aluminum oxide coated disc($Sof-lex^{(R)}$ polishing disc, 3M, USA). The following results were obtained. 1. The rise of temperature during polishing of amalgam restorations was the highest among the all experimental groups except polishing with water coolant(P<0.05). However, there were no statistical differences in temperature rises between Z 100, Dyract and Fuji II LC(P>0.05). 2. The intrapulpal temperature was greatly influenced by the applied time, and intermittent polishing was showed significantly lower temperature rises than continuous polishing(P<0.01). 3. The intrapulpal temperature was increased according to the application of polishing regard less of using water coolant. However, polishing with water coolant showed significantly lower temperature in the pulp than not used water coolant(P<0.01).

  • PDF