• Title/Summary/Keyword: Glass based silica

Search Result 64, Processing Time 0.02 seconds

Characteristics of Borosilicate Glass Incorporated Mortar for Improve Neutron Shielding Capability (중성자 차폐능 향상을 위한 붕규산유리 혼입 모르타르의 특성 분석)

  • Jang, Bo-Kil;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.155-156
    • /
    • 2017
  • Borosilicate glass was incorporated to improve the neutron shielding capability of concrete. Boron is a typical neutron shielding material, and it is contained in borosilicate glass. However, borosilicate glass causes alkali-silica reaction, which damages the concrete. Therefore, studied to reduce the expansion due to alkali-silica reaction and to improve the neuton shielding capability. The measurement of the expansion due to the alkali-silica reaction was based on ASTM C 1260. Experimental results show that the expansion due to alkali-silica reaction is reduced when borosilicate glass powder incorporated. In addition, the neutron shielding capability was significantly improved when the fine aggregate replaced with borosilicate glass.

  • PDF

Effect of Acid Catalyst Kinds on the Pore Structural Characteristics of Water Glass based Silica Aerogel (산 촉매가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Nah, Ha-Yoon;Jung, Hae-Noo-Ree;Lee, Kyu-Yeon;Ku, Yang Seo;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • Water glass is much cheaper than silicon alkoxide, so it has advantage for commercialization. A condensation by acid catalyst makes considerable effect about the properties of water glass based silica aerogel among many factors in silica aerogel process. The pore structural properties of water glass based silica aerogel such as specific surface area and pore size distribution have been investigated through the changes in the amount and the kinds of acid catalyst. It has been confirmed that water glass based silica aerogel is affected by various conditions of catalyst in the condensation reaction such as the kind, concentration, and the amount of mole of acid catalyst on the properties of final products. Especially, it is checked that the effect of mole of acid is more prominent than that of concentration. In the case for conventional method with introducing 4M HCl in condensation step, the silica aerogel could be synthesized which has $394m^2/g$ of specific surface area, 2.20 cc/g of pore volume, 22.3 nm of average pore size, and 92.53% of porosity. On the other hand, when 4M sulfuric acid was used with 73 mmol at the condensation step of water glass based silica aerogel, the pore structural characteristics of water based silica aerogel showed better properties than the case of using HCl, for example, specific surface area was measured as $516m^2/g$, and pore volume, average pore diameter, and porosity were obtained as 3.10 cc/g, 24.1 nm, and 96.1%, respectively.

Treatment of Waste Air Containing Malodor and VOC: 1. Effect of Photocatalyst-carrying Media Porosity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air (악취 및 VOC를 함유한 폐가스의 광촉매 처리: 1. 처리효율에 대한 광촉매담체 다공성의 영향)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.945-951
    • /
    • 2012
  • The effect of photocatalyst-carrying media porosity on the photocatalytic removal efficiency of malodor and VOC of waste air was evaluated when the photocatalytic removal efficiency of porous silica-based media was compared with that of glass bead as control. The amount of photocatalyst coated on the surface of porous silica-based media was observed to be $1,716.3{\mu}g/cm^2$, which was 250% as much as that of nonporous glass bead (control) of $670{\mu}g/cm^2$. The removal efficiencies of hydrogen sulfide and toluene in case of porous silica-based media were observed to be 22% and 82%, respectively, while the removal efficiencies of hydrogen sulfide and toluene in case of nonporous glass bead media were observed to be 19% and 53%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and toluene increased by 16% and 55%, respectively, when the removal efficiencies of porous silica-based media were compared with those of nonporous glass bead media. Thus the increment ratio of the removal efficiency of toluene was observed to be 3.4 times higher than that of hydrogen sulfide.

Preparation of Low Density Water Glass Based Silica Gels by Conventional Drying

  • Einarsrud, Mari-Ann;Elin Nilsen
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • To reduce shrinkage and the possibility of fracture during ambient pressure drying, it is of great importance to increase the strength and stiffness of the wet gels. In this paper is presented the strengthening and stiffening of wet silica gels prepared from sodium silicate (water glass) as well as properties of the corresponding xerogels. By washing gels containing different initial silica contents in water solutions at elevated pH, a maximum in shear modulus of ~4 MPa was obtained. The maximum stiffness enabled xerogels with bulk density of 0.28g/$\textrm{cm}^3$ to be made regardless of silica content and washing conditions. However, by aging the wet gels in a solution providing fresh monomers to the gel network, a shear modulus of 20 MPa was obtained after 27h. By this method monolithic xerogels with a density down to ~0.2g/$\textrm{cm}^3$ was prepared. The results are compared to alkoxide based gels.

  • PDF

Effect of the Surfactant Concentration on the Formation of Water Glass-based Porous Hollow Silica Microsphere (Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향)

  • Lee, Jihun;Kim, Younghun;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.79-83
    • /
    • 2021
  • In this study, hollow silica microspheres (HSM) of various sizes formed according to the concentration of surfactants using water glass as a precursor, which is advantageous for commercialization due to its lower unit cost compared to conventional silicon alkoxide (tetraethyl orthosilicate, TEOS) was synthesized. The physical properties of the silica hollow microspheres according to the concentration of surfactant were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyzers and field emission scanning electron microscopy. When porous water glass-based hollow silica spheres were prepared by adding a surfactant at an appropriate concentration, it was confirmed that excellent hollow silica spheres were formed with a specific surface area of 169 m2/g, an average particle size of 25.3 ㎛, and a standard deviation of 6.25.

Induced Second Order Optical Nonlinearity in Thermally Poled Silica Glasses (Poling된 실리카 유리의 2차비선형광학효과와 공간전하분극의 관계)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1374-1380
    • /
    • 1999
  • The cause of Scond Harmonic Generation (SHG) in thermally poled silica glass is suggested basedon the electrical and dielectric relaxation measurements. The absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of Space Charge Polarization. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field with blocking electrode. Thermal poling performed to induce SHG in silica glass is basically identical to the process generating space charge polarization. Hence it was found that gene-ration removal reproduction and temperature dependence of SHG in poled silica is directly related to those of space charge polarization. It turned out that the fundamental parameters governing the SHG in poled silica are charge carrier concentration and mobility. Based on the theory of space charge polarization and experimental results of electrical rela-xation the method to increase the intensity of SHG is proposed.

  • PDF

Treatment of Waste Air Containing Malodor and VOC: 2. Effect of Light-intensity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air (악취 및 VOC를 함유한 폐가스의 광촉매 처리: 2. 광도의 폐가스 처리효율에 대한 영향)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.952-959
    • /
    • 2012
  • The photocatalytic reactor was designed to have improved efficiency by enhancing a light intensity of photocatalytic reactor using a reflector coated on the surface at the outer radius of annular shaped photocatalytic reactor. The improved photocatalytic reactor performed to treat waste air containing malodor and VOC with the enhanced light intensity, of which the effect on their removal efficiency was investigated. The intensities of illumination of the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst were observed to increase by 28.5% and 30.1%, respectively, compared to those of photocatalytic reactor without any reflector. Using the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst, the removal efficiencies were enhanced by 2~3% and insignificantly, respectively. The removal efficiencies of the optimized photocatalytic reactor with reflectors, filled with porous silica-based media carrying photocatalyst, were observed to increase by 26% and 60%, compared to those of photocatalytic reactor (i.e., 19% and 53%), without any reflector, filled with nonporous glass bead media carrying photocatalyst, for hydrogen sulfide and toluene, respectively. The roughness of used reflector surface was measured to be ca. four times as big as that of a commercial mirror. However, their removal efficiencies are expected to be enhanced by increasing an light intensity resulting from lowering the roughness of used reflector coated on the improved photocatalytic reactor in the future.

Evaluation of Engineering Properties in Synthetic Polymer-Silica Sol Grout (합성폴리머 실라카졸 그라우트의 공학적 특성 평가)

  • Jang, Seong-Min;Jung, Hyuk-Sang;Kim, Jeong-Han;Min, Byung-Chan;Lee, Byeong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • The engineering characteristics of synthetic polymer-silica sol, which has the effect of reducing leakage, was evaluate and compared with typical grouting material, the water glass-based SGR injection material in this study. The result of the laboratory tests on strength and durability about the synthetic polymer-silica sol showed more than twice as high as LW-based injection materials in uniaxial compressive strength, significantly lower values in shrinkage rate and permeability. The result of pH was less than 8.5 (the drinking water quality standard). As a result of the leaching test, the Na2O elution amount of the synthetic polymer-silica sol was measured to be 3 to 4 times smaller than that of the water glass grout. These results be assumed that the synthetic polymer-silica sol has better durability and permeability than those of the typical water glass-based grout.

A New Method for Measuring Refractive Index with a Laser Frequency-shifted Feedback Confocal Microscope

  • Zhou, Borui;Wang, Zihan;Shen, Xueju
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • In this paper, a new method is presented to measure the refractive index of single plain glass or multilayered materials, based on a laser frequency-shifted confocal feedback microscope. Combining the laser frequency-shifted feedback technique and the confocal effect, the method can attain high axial-positioning accuracy, stability and sensitivity. Measurements of different samples are given, including N-BK7 glass, Silica plain glass, and a microfluidic chip with four layers. The results for N-BK7 glass and Silica plain glass show that the measurement uncertainty in the refractive index is better than 0.001. Meanwhile, the feasibility of this method for multilayered materials is tested. Compared to conventional methods, this system is more compact and has less difficulty in sample processing, and thus is promising for applications in the area of refractive-index measurement.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.