DOI QR코드

DOI QR Code

Effect of the Surfactant Concentration on the Formation of Water Glass-based Porous Hollow Silica Microsphere

Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향

  • Lee, Jihun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Younghun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Taehee (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 이지훈 (연세대학교 신소재공학과) ;
  • 김영훈 (연세대학교 신소재공학과) ;
  • 김태희 (연세대학교 신소재공학과) ;
  • 박형호 (연세대학교 신소재공학과)
  • Received : 2021.12.08
  • Accepted : 2021.12.10
  • Published : 2021.12.30

Abstract

In this study, hollow silica microspheres (HSM) of various sizes formed according to the concentration of surfactants using water glass as a precursor, which is advantageous for commercialization due to its lower unit cost compared to conventional silicon alkoxide (tetraethyl orthosilicate, TEOS) was synthesized. The physical properties of the silica hollow microspheres according to the concentration of surfactant were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyzers and field emission scanning electron microscopy. When porous water glass-based hollow silica spheres were prepared by adding a surfactant at an appropriate concentration, it was confirmed that excellent hollow silica spheres were formed with a specific surface area of 169 m2/g, an average particle size of 25.3 ㎛, and a standard deviation of 6.25.

본 연구에서는 기존의 silicon alkoxide(tetraethyl orthosilicate, TEOS)에 비해 단가가 저렴하여 상업화에 유리한 물유리를 전구체로 사용하여 계면활성제의 농도에 따라 형성되는 다양한 크기의 실리카 중공 미세구(hollow silica microsphere, HSM)를 합성하였다. 계면활성제의 농도에 따른 실리카 중공 미세구의 형성에 대한 물성을 퓨리에 분광기(Fourier transform infrared spectrometer), 접촉각 측정기(contact angle measurement), Brunauer-Emmett-Teller 및 Barrett-Joyner-Halenda 분석기와 전계방사형 주사전자현미경(field emission scanning electron microscopy)를 이용하여 분석하였다. 계면활성제를 적정량의 농도로 투입하여 porou s한 물유리 기반 실리카 중공 미세구를 제조할 경우 비표면적은 169 m2/g, 평균 입자 크기 25.3 ㎛ 및 표준편차는 6.25로 우수한 실리카 중공 미세구가 형성됨을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A5A1019131).

References

  1. M. Wei, C. J. Van Oers, X. Hao, Q. Qiu, P. Cool and S. Liu, "Influence of Silica Forming Media on the Synthesis of Hollow Silica Micr", Microporous Mesoporous Mater., 138, 17 (2011). https://doi.org/10.1016/j.micromeso.2010.09.036
  2. A. J. Wang, Y. P. Lu and R. X. Sun, "Recent Progress on the Fabrication of Hollow Microspheres", Mater. Sci. Eng., 460-461, 1 (2007). https://doi.org/10.1016/j.msea.2007.02.043
  3. P. M. Arnal, M. Comotti, and F. Schuth, "High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation", Chem. Int. Ed., 45, 8224 (2006). https://doi.org/10.1002/anie.200603507
  4. J. K. Cochran, "Ceramic Hollow Spheres and Their Applications", Curr. Opin. Solid State Mater. Sci., 3, 474 (1998). https://doi.org/10.1016/S1359-0286(98)80010-7
  5. F. Caruso, R. A. Caruso and H. Mohwald, "Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating", Science, 282, 1111 (1998). https://doi.org/10.1126/science.282.5391.1111
  6. C. J. Martinez, B. Hockey, C. B. Montgomery and S. Semancik, "Porous Tin Oxide Nanostructured Microspheres for Sensor Applications", Langmuir, 21, 7937 (2005). https://doi.org/10.1021/la050118z
  7. W. Yin, W. Wang, M. Shang, L. Zhou, S. Sun and L. Wang, "BiVO4 Hollow Nanospheres: Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis", Eur. J. Inorg. Chem., 2009, 4379 (2009). https://doi.org/10.1002/ejic.200900614
  8. D. L. Wilcox, M. Berg, and T. Bernat, "Microsphere Fabrication and Applications: An Overview", MRS Symp. Proc., 372 (1995).
  9. K. K. Kim and K. Y. Jang, "Hollow Silica Spheres of Controlled Size and Porosity by Sol-Gel Processing", J. Am. Ceram. Soc. 74, 1987 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07819.x
  10. A. Kentepozidou, C. Kiparissides, F. Kotzia, C. Kollia, and N. Spyrellis, "Nickel/microcapsules Composite Electrocoatings; The Synthesis of Water-containing Microcapsules and Preparation of the Coatings", J. Mat. Sci., 31, 1175 (1996). https://doi.org/10.1007/BF00353096
  11. N. Kawahashi and E. Matijevic, "Preparation and Properties of Uniform Coated Colloidal Particles: V. Yttrium Basic Carbonate on Polystyrene Latex", J. Colloid Interface Sci., 138, 54 (1990).
  12. Jr. R. Meyer and H. Weitzing, "Lead Zirconate Titanate Hollow-Sphere Transducers", J. Am. Ceram. Soc. 77, 1669 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb09775.x
  13. H. Y. Nah, H. N. R. Jung and H. H. Park, "Effect of Acid Catalyst Kinds on the Pore Structural Characteristics of Water Glass based Silica Aerogel (in Kor.)", J. Microelectron. Packag. Soc., 24(3), 13-18 (2017). https://doi.org/10.6117/KMEPS.2017.24.3.013
  14. H. G. Sowman, "Non-vitreous Ceramic Metal Oxide Microcapules and Process for Making Same", U. S. Patent, 4,349,456 (1982).
  15. H. Omranpour and S. Motahari, "Effects oF Processing Conditions on Silica Aerogel During Aging: Role of Solvent, Time and Temperature", Journal of Non-Crystalline Solids, 379, 7-11 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.07.025
  16. S. D. Bhagat, Y. H. Kim, Y. S. Ahn and J. G. Yeo, "Textural properties of ambient pressure dried water-glass based silica aerogel beads: One day synthesis", Microporous and Mesoporous Mater., 96, 237-244, (2006). https://doi.org/10.1016/j.micromeso.2006.07.002
  17. X. Feia, S. Liu, B. Zhang and H. Zhao, "Effect of Alkyltriethoxysilane on the Performance of Sodium Silicate-based Silica Shell Phase Change Microcapsules", Colloids and Surf. A Physicochem. Eng. Asp., 608, 125503 (2021). https://doi.org/10.1016/j.colsurfa.2020.125503
  18. S. Qiu, J. G. Nai, D. K. Sun, S. Zhao, J. F. Sun, Z. B. Guo, K. Hu, and N. Gu, "Synthesis and Characterization of Magnetic Polyvinyl Alcohol (PVA) Hydrogel Microspheres for the Embolization of Blood Vessel", IEEE Trans. Biomed. Eng., 63, 4 (2016). https://doi.org/10.1109/TBME.2015.2467312
  19. C. Y. Jung, J. S. Kim, T. S. Chang, S. T. Kim, H. J. Lim, and S. M. Koo, "One-Step Synthesis of Structurally Controlled Silicate Particles from Sodium Silicates using a Simple Precipitation Process", Langmuir, 26(8), 5456-5461 (2010). https://doi.org/10.1021/la904572y
  20. K. Y. Lee, H. N. R. Jung, D. B. Mahidik and H. H. Park, "Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer", J. Microelectron. Packag. Soc., 23(3), 1 (2016). https://doi.org/10.6117/KMEPS.2016.23.3.001
  21. D. B. Mahadik, H. N. R. Jung, Y. K. Lee, K. Y. Lee and H. H. Park, "Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process", J. Microelectron. Packag. Soc., 23(1), 35 (2016). https://doi.org/10.6117/KMEPS.2016.23.1.035
  22. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. R. Reinoso, J. Rouquerol and K. S. W. Sing, "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)", Pure Appl. Chem., 87(9-10), 1051-1069 (2015). https://doi.org/10.1515/pac-2014-1117
  23. P. He, X. D. Gao, X. M. Li, Z. W. Jiang, Z. H. Yang, C. L. Wang and Z. Y. Gu, "Highly Transparent Silica Aerogel Thick Films with Hierarchical Porosity from Water Glass via Ambient Pressure Drying", Mater. Chem. Phys, 147(1-2), 65-74 (2014). https://doi.org/10.1016/j.matchemphys.2014.04.007
  24. Y. Sargam, K. Wang, A. Tsyrenova, F. Liu and S. Jiang, "Effects of Anionic and Nonionic Surfactants on the Dispersion and Stability of NanoSiO2 in Aqueous and Cement Pore Solutions", Cem. Concr. Res., 144, 106417 (2021). https://doi.org/10.1016/j.cemconres.2021.106417
  25. S. I. Kim, T. Yamamoto, A. Endo, T. Ohmori, and M. Nakaiwa, "Influence of Nonionic Surfactant Concentration on Physical Characteristics of Resorcinol-Formaldehyde Carbon Cryogel Microspheres", J. Ind. Eng. Chem., Vol. 12, No. 3, 484-488, (2006).
  26. M. A. Annisa and E. Budianto, "Effect of Surfactant Mixing in Microspheres Preparations Using Polyblend of Poly(lactic acid) and Polycaprolactone", IOP Conf. Ser. Mater. Sci. Eng., 763, 012053 (2020). https://doi.org/10.1088/1757-899X/763/1/012053