DOI QR코드

DOI QR Code

Flexible Carbon/PDMS Composite for the Application of Sensor

신축성을 가진 Carbon/PDMS 복합체의 센서 응용 연구

  • Lee, Junho (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Kyoung Ryeol (Green Materials & Process R&D Group, Korea Institute of Industrial Technology) ;
  • Mhin, Sungwook (Department of Advanced Materials Engineering, Kyonggi University)
  • 이준호 (경기대학교 창의공과대학 신소재공학전공) ;
  • 박경열 (한국생산기술연구원 울산본부 친환경재료공정연구그룹) ;
  • 민성욱 (경기대학교 창의공과대학 신소재공학전공)
  • Received : 2021.12.06
  • Accepted : 2021.12.09
  • Published : 2021.12.30

Abstract

Flexible electrodes for wearable devices have been actively studied in not only achieving mechanical/electrical stability, but also providing various functionalities for extending its industrial application. In this study, a flexible carbon/PDMS composite is prepared by addition of carbon black (CB) as a conductive filler, and effect of CB with different contents on electrical properties of the composite was investigated for the application of flexible electrodes, temperature sensor and heater. With increase of CB contents, resistivity of the carbon/PDMS was increased, and excellent durability was observed, confirmed by repetitive stretching deformation test. Resistance increase of the carbon/PDMS with temperature reveals the property of positive temperature coefficient, which can be applied for temperature sensor. Also, joule heating on the carbon/PDMS was observed when electrical potential was applied, indicating the applicability of the carbon/PDMS for heater.

신체 착용 및 부착이 가능한 웨어러블 기기용 유연 전극은 외력에 대한 기계적/전기적 내구성을 확보하고 동시에, 다양한 기능성을 부여하는 방향으로 연구가 활발히 진행되고 있다. 본 연구는 Carbon black를 전도성 필러로 적용하여 Carbon/PDMS 기반 유연 복합체를 제조하고 carbon black의 함량에 따른 복합체의 유연전극, 온도 센서 및 히터용 소재로서의 적용 가능성에 대해 고찰해 보았다. Carbon black의 함량 증가에 따른 비저항 감소를 관찰하였고, 반복인장에 따른 전기저항 변화율 실험을 통해 유연전극으로서의 적용 가능성을 확인하였다. 온도 변화에 따른 carbon/PDMS 복합체의 전기적 특성 평가를 통해 온도센서로서 적용이 가능한 정온도계수 특성을 관찰하였고, carbon black 함량에 따라 정온도계수 특성 조절이 가능함을 확인할 수 있었다. 전압 인가에 따른 Carbon/PDMS 복합체의 발열 특성 관찰을 통해 히터용 소재로서의 적용가능성 역시 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. J. Nam, B. Seo, Y. Lee, D. H. Kim, and S. Jo, "Cross-buckled structures for stretchable and compressible thin film silicon solar cells", Sci. Rep., 7, 7575 (2017). https://doi.org/10.1038/s41598-017-08012-y
  2. Z. Yang, J. Deng, X. Sun, H. Li, and H. Peng, "Stretchable, wearable dye-sensitized solar cells", Adv. Mater., 26, 2643-2647 (2014). https://doi.org/10.1002/adma.201400152
  3. Darren J. Lipomi and Z. Bao, "Stretchable, elastic materials and devices for solar energy conversion", Energ. Environ. Sci., 4, 3314-3328 (2011). https://doi.org/10.1039/c1ee01881g
  4. X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, "Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing", Sci. Adv., 3, e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
  5. W. Liu, M. S. Song, B. Kong, and Y. Cui, "Flexible and stretchable energy storage: recent advances and future perspectives", Adv. Mater., 29, 1603436 (2017). https://doi.org/10.1002/adma.201603436
  6. A. M. Zamarayeva, A. E. Ostfeld, M. Wang, J. K. Duey, I. Deckman, B. P. Lechene, G. Davies, D. A. Steingart, and A. C. Arias, "Flexible and stretchable power sources for wearable electronics", Sci. Adv., 3, e1602051 (2017). https://doi.org/10.1126/sciadv.1602051
  7. S. H. Jeong, S. Zhang, K. Hjort, J. Hilborn, and Z. Wu, "PDMS-based elastomer tuned soft, stretchable and sticky for epidermal electronics", Adv. Mater., 28, 5830-5836 (2016). https://doi.org/10.1002/adma.201505372
  8. Y. Cheng, R. Wang, H. Zhai, and J. Sun, "Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain", Nanoscale, 9, 3834-3842 (2017). https://doi.org/10.1039/c7nr00121e
  9. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors", Nat. Mater., 8, 494-499 (2009). https://doi.org/10.1038/nmat2459
  10. C. H. Lee, D. R. Kim, and X. Zheng, "Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method", Nano Lett., 11, 3435-3439 (2011). https://doi.org/10.1021/nl201901z
  11. H. S. Liu, B. C. Pan, and G. S. Liou, "Highly transparent Ag NW/PDMS stretchable electrodes for elastomeric electrochromic devices", Nanoscale, 9, 2633-2639 (2017). https://doi.org/10.1039/c6nr09220a
  12. S. M. Park, N. S. Jang, S. H. Ha, K. H. Kim, D. W. Jeong, J. Kim, J. Lee, S. H. Kim, and J. M. Kim, "Metal nanowire percolation micro-grids embedded in elastomers for stretchable and transparent conductors", J. Mater. Chem. C, 3, 8241-8247 (2015). https://doi.org/10.1039/C5TC00740B
  13. K. R. Park, J. E. Jeon, H. Han, S. Yoo, K. Shim, S. Mhin, "Facile design of conductive Ag-PDMS electrodes for stretchable electrodes", J. Electron. Mater., 48(1), 79-84 (2019). https://doi.org/10.1007/s11664-018-6731-6
  14. J. A. Fan, W. H. Yeo, Y. Su, Y. Hattori, W. Lee, S. Y. Jung, Y. Zhang, Z, Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, and J. A. Rogers, "Fractal design concepts for stretchable electronics", Nat. Commun., 5, 3266 (2014). https://doi.org/10.1038/ncomms4266
  15. H. Hocheng and C. M. Chen, Design, "fabrication and failure analysis of stretchable electrical routings", Sensors, 14, 11855-11877 (2014). https://doi.org/10.3390/s140711855
  16. H. Hwang, D. G. Kim, N. S. Jang, J. H. Kong, and J. M. Kim, "Simple method for high-performance stretchable composite conductors with entrapped air bubbles", Nanoscale Res. Lett., 11, 14 (2016). https://doi.org/10.1186/s11671-016-1229-8
  17. A. Rinaldi, A. Tamburrano, M. Fortunato, and M. S. Sarto, "A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets", Sensors, 16, 2148 (2016). https://doi.org/10.3390/s16122148
  18. G. S. Jeong, D. H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim, and S. H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer", Nat. Commun., 3, 977 (2012). https://doi.org/10.1038/ncomms1980
  19. T. W. Lee and H. H. Park, "The effect of MWCNTs on the electrical properties of a stretchable carbon composite electrode", Compos. Sci. Technol., 114, 11-16 (2015). https://doi.org/10.1016/j.compscitech.2015.03.020
  20. V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Voros, and A. Larmagnac, "Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties", Appl. Mater. Interfaces, 7, 13467-13475 (2015). https://doi.org/10.1021/acsami.5b02508
  21. A. Larmagnac, S. Eggenberger, H Janossy, and J. Voros, "Stretchable electronics based on Ag-PDMS composites", Sci. Rep., 4, 7254 (2014). https://doi.org/10.1038/srep07254
  22. S. H. Jang, Y. L. Park, and H. Yin, "Influence of coalescence on the anisotropic mechanical and electrical properties of nickel powder/polydimethylsiloxane composites", Materials, 9, 239 (2014). https://doi.org/10.3390/ma9040239