DOI QR코드

DOI QR Code

A New Method for Measuring Refractive Index with a Laser Frequency-shifted Feedback Confocal Microscope

  • Zhou, Borui (Department of Electronic and Optical Engineering, Army Engineering University of PLA) ;
  • Wang, Zihan (College of Science, Beijing Forestry University) ;
  • Shen, Xueju (Department of Electronic and Optical Engineering, Army Engineering University of PLA)
  • Received : 2019.09.25
  • Accepted : 2019.11.01
  • Published : 2020.02.25

Abstract

In this paper, a new method is presented to measure the refractive index of single plain glass or multilayered materials, based on a laser frequency-shifted confocal feedback microscope. Combining the laser frequency-shifted feedback technique and the confocal effect, the method can attain high axial-positioning accuracy, stability and sensitivity. Measurements of different samples are given, including N-BK7 glass, Silica plain glass, and a microfluidic chip with four layers. The results for N-BK7 glass and Silica plain glass show that the measurement uncertainty in the refractive index is better than 0.001. Meanwhile, the feasibility of this method for multilayered materials is tested. Compared to conventional methods, this system is more compact and has less difficulty in sample processing, and thus is promising for applications in the area of refractive-index measurement.

Keywords

References

  1. S. Singh, "Refractive index measurement and its applications," Phys. Scr. 65, 167-180 (2002). https://doi.org/10.1238/Physica.Regular.065a00167
  2. J. W. Ye, M. Xia, and K.-C. Yang, "An improved differential algorithm for the critical-angle refractometer," Optoelectron. Lett. 15, 108-112 (2019). https://doi.org/10.1007/s11801-019-8137-y
  3. V. G. Plotnichenko and V. O. Sokolov, "Influence of absorption on the refractive index determination accuracy by the minimum deviation method," Appl. Opt. 57, 639-647 (2018). https://doi.org/10.1364/AO.57.000639
  4. G. H. Meeten, "Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials," Meas. Sci. Technol. 8, 728-733 (1997). https://doi.org/10.1088/0957-0233/8/7/006
  5. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998). https://doi.org/10.1063/1.367101
  6. Y. Liang, F. Wang, X. Luo, Q. Li, T. Lin, I. T. Ferguson, Q. Yang, L. Wan, and Z. C. Feng, "Investigation of the optical properties of InSb thin films grown on GaAs by temperature-dependent spectroscopic ellipsometry," J. Appl. Spectrosc. 86, 276-282 (2019). https://doi.org/10.1007/s10812-019-00812-6
  7. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, "Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry," Appl. Phys. Lett. 94, 011914 (2009). https://doi.org/10.1063/1.3062996
  8. S. Guo, G. Gustafsson, O. J. Hagel, and H. Arwin, "Determination of refractive index and thickness of thick transparent films by variable-angle spectroscopic ellipsometry: application to benzocyclobutene films," Appl. Opt. 35, 1693-1699 (1996). https://doi.org/10.1364/AO.35.001693
  9. T. Schneider, D. Leduc, C. Lupi, J. Cardin, H. Gundel, and C. Boisrobert, "A method to retrieve optical and geometrical characteristics of three layer waveguides from m-lines measurements," J. Appl. Phys. 103, 063110 (2008). https://doi.org/10.1063/1.2885147
  10. T. Wood, V. Brissonneau, J.-B. Bruckner, G. Berginc, F. Flory, J. L. Rouzo, and L. Escoubas, "Optical measurement of exposure depth and refractive index in positive photoresists," Opt. Commun. 291, 184-192 (2013). https://doi.org/10.1016/j.optcom.2012.10.062
  11. S. Monneret, P. Huguet-Chantome, and F. Flory, "m-Lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A: Pure Appl. Opt. 2, 188-195 (2000). https://doi.org/10.1088/1464-4258/2/3/304
  12. R. Ince and E. Huseyinoglu, "Decoupling refractive index and geometric thickness from interferometric measurements of a quartz sample using a fourth-order polynomial," Appl. Opt. 46, 3498-3503 (2007). https://doi.org/10.1364/AO.46.003498
  13. G. D. Gillen and S. Guha, "Use of michelson and Fabry-Perot interferometry for independent determination of the refractive index and physical thickness of wafers," Appl. Opt. 44, 344-347 (2005). https://doi.org/10.1364/AO.44.000344
  14. S. H. Kim, S. H. Lee, J. I. Lim, and K. H. Kim, "Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry," Appl. Opt. 49, 910-914 (2010). https://doi.org/10.1364/AO.49.000910
  15. N. A. Andrushchak, O. I. Syrotynsky, I. D. Karbovnyk, Y. V. Bobitskii, A. S. Andrushchak, and A. V. Kityk, "Interferometry technique for refractive index measurements at subcentimeter wavelengths," Microw. Opt. Technol. Lett. 53, 1193-1196 (2011). https://doi.org/10.1002/mop.25944
  16. H. J. Choi, H. H. Lim, H. S. Moon, T. B. Eom, J. J. Ju, and M. Cha, "Measurement of refractive index and thickness of transparent plate by dual-wavelength interference," Opt. Express 18, 9429-9434 (2010). https://doi.org/10.1364/OE.18.009429
  17. L. Xu, S. Zhang, Y. Tan, and L. Sun, "Simultaneous measurement of refractive-index and thickness for optical materials by laser feedback interferometry," Rev. Sci. Instrum. 85, 083111 (2014). https://doi.org/10.1063/1.4892465
  18. C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, "Surface plasmon resonance refractive index sensor based on active photonic crystal fiber," IEEE Photonics J. 5, 4801108 (2013). https://doi.org/10.1109/JPHOT.2013.2292302
  19. L. Ji, X. Sun, G. He, Y. Liu, X. Wang, Y. Yi, and D. Zhang, "Surface plasmon resonance refractive index sensor based on ultraviolet bleached polymer waveguide," Sens. Actuator B 244, 373-379 (2017). https://doi.org/10.1016/j.snb.2017.01.006
  20. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 15, 11413-11426 (2007). https://doi.org/10.1364/OE.15.011413
  21. K. Otsuka, "Effects of external perturbations on LiNdP4O12 lasers," IEEE J. Quantum. Electron. 15, 655-663 (1979). https://doi.org/10.1109/JQE.1979.1070053
  22. P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 14 (1963).
  23. S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum. Electron. 31, 113-119 (1995). https://doi.org/10.1109/3.341714
  24. B. Ovryn and J. H. Andrews, "Phase-shifted laser feedback interferometry," Opt. Lett. 23, 1078-1080 (1998). https://doi.org/10.1364/OL.23.001078
  25. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Brosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004). https://doi.org/10.1109/TIM.2003.822194
  26. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, "Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser," Opt. Lett. 27, 1339-1341 (2002). https://doi.org/10.1364/OL.27.001339
  27. J. Li, H. Niu, and Y. X. Niu, "Laser feedback interferometry and applications: a review," Opt. Eng. 56, 050901 (2017). https://doi.org/10.1117/1.OE.56.5.050901
  28. Y. Tan, W. Wang, C. Xu, and S. Zhang, "Laser confocal feedback tomography and nano-step height measurement," Sci. Rep. 3, 2971 (2013). https://doi.org/10.1038/srep02971
  29. K. P. Birch and M. J. Downs, "Correction to the updated Edlen equation for the refractive index of air," Metrologia 31, 315-316 (1994). https://doi.org/10.1088/0026-1394/31/4/006