• Title/Summary/Keyword: Glass Lens

Search Result 260, Processing Time 0.032 seconds

Electron Beam Simulation Technology for CRTs

  • Shirai, Shoji;Oku, Kentarou
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.385-387
    • /
    • 2002
  • The electron beam simulation technology is indispensable for the recent electron gun design. The technology is becoming more and more important for deflection yoke (DY) design and investigation of the interference effects between gun and DY. Further, it may become vital even for shadow mask, glass funnel, exposure lens and magnetic shield.

  • PDF

Fabrication of the Imaging Lens for Mobile Camera using Embossing Method (엠보싱 공법에 의한 카메라 모듈용 광학렌즈 성형기법에 대한 연구)

  • Lee, C.H.;Jin, Y.S.;Noh, J.E.;Kim, S.H.;Jang, I.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.79-83
    • /
    • 2007
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale replication technology. A multiple-layered structure of several aspheric lenses in a mobile camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. We have demonstrated a VGA camera module fabricated by the wafer-scale replication processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having 200 um sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in order to achieve a higher resolution in wafer-scaled lenses for mobile camera modules.

  • PDF

An Experimental Study on Flow Characteristics of PBK40 for Glass Lens Press Process Simulation of a Plate Heating Type (Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 실험적 연구)

  • Chang S.H.;Heo Y.M.;Yoon G.S.;Shin K.H.;Lee Y.M.;Jung W.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.567-568
    • /
    • 2006
  • Generally, progressive type GMP process is more efficient than batch type because there are advantages that problems of each stage(heating, press, cooling etc.) are easily grasped and a time of production is shortened. But if single cavity is used in progressive type GMP process, there is disadvantage that productivity is decreased. So, in order to improve productivity of progressive type GMP process, it is essential to secure multi cavity mold technic. In this study, as a fundamental study to develop multi cavity used in glass lens molding, we conducted a compression test for PBK40.

  • PDF

Characteristics of Pt thin films on WC for glass lens molding (유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Yung;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

Synthesis of Novel Polythiol for Plastic Optical Lens and its Ophthalmic Lens

  • Jang, Dong-Gyu;Roh, Soo-Gyun;Kim, Jong-Hyo;Jin, Wen-Yi;Seo, Jin-Moo;Kwon, Myeong-Ja;Lee, Soo-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2227-2232
    • /
    • 2009
  • Novel polythiol materials of urethane lens series for plastic optical lens were synthesized from polyol materials via thioisouronium of thiourea with c-HCl in refluxing aqueous solution, in which polythiol material was carried out from hydrolysis of thioisouronium by ammonia water. Their structure properties were identified by EA, EI-MS, FT-IR, $^1H\;and\;^{13}C$ NMR spectroscopies and TGA. Their ophthalmic lenses as polythiourethane material were prepared by thermal curing to an injected glass mold using the evenly solutions of diisocyanates series (TDI, XDI, HDI or IPDI) with polythiols. Polythiourethane shows that the strong stretching mode for SH group of polythiol disappeared in FT-IR spectra after thermosetting polymerization. Thermal deformation starting temperature of ophthalmic lenses was determined by TMA. Ophthalmic lenses made from characteristic polythiol and diisocyanate series have transparency, colorless and good impact strength, in which thermal resistance and impact strength of ophthalmic lenses were influenced by diisocyanate series. Physical properties of ophthalmic lens have contrast thermal resistance with impact strength. The property of thermal resistance and impact strength for respective ophthalmic lenses was examined by TMA and drop ball test.

Fabrication and Modeling of Microlens Array by a Modified LIGA Process

  • Kim Dong Sung;Lee Hyun Sup;Yang Sang Sik;Lee Bong-Kee;Lee Sung-Keun;Kwon Tai Hun;Lee Seung S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.7-13
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for micro lens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of micro lens which depend on the thermal treatment. For the replication of micro lens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of micro lenses. Fabricated microlenses showed good surface roughness with the order of 1nm.

  • PDF