• Title/Summary/Keyword: Glass Dosimeter

Search Result 84, Processing Time 0.025 seconds

Radiation Dose during Fluoroscopy at the Organ from Extracorporeal Shock Wave Lithotripsy (체외충격파쇄석술에서 투시 시 주요 장기별 방사선 피폭선량)

  • Moon, Sung-Ho;Jung, Hong-Ryang;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.343-350
    • /
    • 2010
  • We measured the radiation exposure for 55 persons (male: 36, female: 19) who was diagnosed with kidney and ureter stones and received ESWL. The absorbed dose was measured at the organ which is expected to absorb relatively much radiation (kidney, bladder, liver). The radiation dose measurement voltage 80kVp, current of 5mA as a fixed model of the human body by using the Rando phantom with Radiophotoluminescent Glass Dosimeter. Absorbed dose was measured for two times (5 minute and 10 minute, each) and converted to effective dose. Mean number of treatment was 1.8 times (1~4) per patient was the mean time of radiation exposure533 seconds (248-2516). For the treatment of right renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.458mSv, 0.152mSv, 1.404 mSv and 0.019mSv, respectively. For the treatment of left renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.496mSv, 0.252mSv, 0.178 mSv, and 0.017mSv, respectively. For the treatment of distal ureter stone, the effective dose of right kidney, left kidney and bladder was 0.009mSv, 0.01mSv and 3.742mSv, respectively.

Evaluation of Dose According to the Volume and Respiratory Range during SBRT in Lung Cancer (폐암의 정위적 체부 방사선치료 시 체적 설정과 호흡주기에 따른 선량평가)

  • Lee, Deuk-Hee;Park, Eun-Tae;Kim, Jung-Hoon;Kang, Se-Seik
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.391-397
    • /
    • 2016
  • Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

Measurement of the Spatial Scattering Dose by Opening, Closing Door and Installing Shielding : A Study on the Reduction of Exposure Dose in Radiography (문 개폐 여부와 차폐체 설치 유무에 따른 공간산란선량 측정 : X선 촬영 시 피폭선량 감소방안에 대한 연구)

  • Yoon, Hong-Joo;Lee, Yong-Ki;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.477-482
    • /
    • 2019
  • Recently, due to the increased use of medical radiation, the radiation exposure of radiation workers should be considered as well as medical exposure of patients. And it is recommended to close the door during radiography. however, In this study, when the door was inevitably opened for radiography, the proposed method was to install the shield as a method of reducing the exposure dose. And its efficiency was analyzed. In simple chest radiography, the measurement point was changed according to the measurement location. Dose rate were measured 10 times for each condition using a dosimeter. And the average value was derived. Using this, the change of dose according to the opening and closing of the door and the installation of the shield was analyzed. Using this, we compared and analyzed the dose change according to the door opening and closing and the installation of the shield, and significance was verified through the SPSS ver. 24. Depending on whether the door was opened or closed, 11,215.35%, 159.0%, 101.9% increased in front of the door in the consol room, behind the wall and behind the lead glass. Depending on the installing of the shield, the 49.2%, 29.6%, 19.9%, 30.6% decrease in front of the door in the examination and consol room, behind the wall and lead glass. In addition, statistical analysis was showed that there were significant differences in both the results according to whether the door was opened or closed and shielding(p<.05). Close the door during radiography. However, when the door should be opened, it was confirmed that the dose rate were reduced by installing the shield. Therefore, to optimize radiation protection, it is recommended to install shields when opening the door.

The Effects of Nonmagnetic Bolus on Contralateral Breast Skin Dose during Tangential Breast Irradiation Therapy

  • Won, Young-Jin;Cho, Jae-Hwan;Kim, Sung-chul
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.133-140
    • /
    • 2016
  • In this study the contralateral breast skin dose was decreased. It was to apply the results to the clinical study after analysis of different radiation dose amounts to contralateral breast with nonmagnetic bolus and without nonmagnetic bolus. A Rando phantom was computed tomography (CT) simulated, five treatment plans were generated: open tangents, open field in field, wedge 15, wedge 30, and intensity-modulated radiotherapy (IMRT) plan with 50.4 Gy to cover sufficient breast tissue. Contralateral breast skin dose was measured at 8 points using a glass dosimeter. The average contralateral breast dose using nonmagnetic bolus showed better excellence in decreasing the absorbed dose in the order of $168{\pm}11.1$ cGy, $131{\pm}10.2$ cGy (29%), $112{\pm}9.7$ cGy (49%), and $102{\pm}9.5$ cGy (64%) than changing the treatment plan. This study focused on decreasing the effect of scattered dose by use of a nonmagnetic bolus on the contralateral breast during radiotherapy in breast cancer patients and an intriguingly significant decrease was observed parallel to the opposed beam.

Research about the absorbed dose with speculum material-related in Hysterosalpingography (자궁난관 조영술 검사 시 Speculum 재질에 따른 흡수선량의 변화에 관한 연구)

  • Kim, Yun-Min
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of our study was to determine the entrance surface dose and absorbed dose in ovary when using the metal speculum and plastic speculum in hysterosalpingography respectively. The examinations was performed in anthropomorphic phantom into which calibrated photoluminescence glass dosimeter were placed on symphysis pubis level surface and ovary area. We checked average fluoroscopy time and spot expose times during the hysterosalpingography. It was average fluoroscopy time 58 sec, spot expose 5 times. We divided the subjects into two different groups to used metal and plastic speculum. We measured 10 times of absorbed dose in the same condition of the anthropomorphic phantom. We compared two groups adsorbed dose on ovary with speculum material-related. The entrance surface dose on of plastic Speculum using group was average 17.23 mGy, absorbed dose on ovary was average 3.51 mGy. The entrance surface dose on ovary of metal Speculum using group was average 19.95 mGy, absorbed dose on ovary was average 4.14 mGy. Plastic speculum using group shows a decrease absorbed dose(17.9%) as compared with metal speculum using group. The method of plastic speculum using in hysterosalpingography. might provide us with lower radiation dose, especially in patients with childbearing stage.

  • PDF

Quality Control of Radiation Dosimetry Service (개인피폭선량 측정기관의 품질관리기준 개발)

  • Lee, Jun-Haeng;Lee, Sang-Bock;Chang, Kun-Jo;Lee, Kwang-Yong;Lee, Hyun-Koo;Kim, Hyeog-Ju;Jin, Gye-Hwan
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2009
  • We have developed standards based on international criterions for the quality control of dose tested by the measurement institutions of individual exposure doses through improving the reliability of data on the exposure dose of individuals working in radioactive environment and securing the accuracy and reliability of individual dose measurements. Laws related to radiation dose applied to domestic institutions refer to ANSI N13.11.1993, but currently, in U.S. and some other countries the measurement of radiation doses is based on ANSI N13.11.2001 that reduced test categories and tightened the standards. We made efforts to simplify the standards and to reduce the number of dosimeters required in experiment, and avoided preventing or hindering the use of future technologies not approved under the current law such as glass dosimeter and optical stimulation dosimeter. The Quality Management Manual of Radiation Dosimetry Service, Assessment Manual of Radiation Dosimetry Service Accreditation Program, and the Personnel Dosimetry Performance. Criteria for Testing are documents applicable in supervising laboratories.

  • PDF

Evaluation of Caregivers' Exposed Dose and Patients' External Dose Rate for Radioactive Iodine (I-131) Therapy Administration in Isolated Ward (방사성요오드(I-131) 격리병실 치료 관리를 위한 환자의 체외방사선량률과 상주 보호자의 피폭선량평가)

  • Kang, Seok-Jin;Lee, Doo-Hyeon;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In this study, the radiation dose rate was measured by time and distance and evaluated whether radiation dose rate was suitable for domestic and international discharge criteria. In addition, the radiation dose emitted from the patient was measured with a glass dosimeter to evaluate the exposure dose if the caregiver stays in the isolated ward by placing a humanoid phantom instead of the caregiver at a distance of 1 m from the patient, on the second day of treatment. After 23 hours of isolation, the radiation dose rates at a distance of 1 m were 20.54 ± 6.21 µSv/h at 2.96 GBq administration and 27.94 ± 12.33 µSv/h at 3.70 GBq administration. The radiation dose rates at a distance of 1 m were 25.90 ± 2.21 µSv/h when 2.96 GBq was administered and 34.22 ± 10.06 µSv/h when 3.70 GBq was administered after 18 hours of isolation. However, if the isolation period is short may cause unnecessary radiation exposure to the third person. The reading of the attached dosimeter from the morning of the second day of treatment until removal was 0.01 to 0.95 mSv, which is a surface dose determined by the International Commission on Radiation Units and Measurements. And the depth dose was 0.01 to 0.99 mSv. On the second day of treatment, even if the patient caregivers stayed in the isolation ward, the exposure dose of the patient family did not exceed the effective dose limit of 5 mSv recommended by the ICRP and NCRP.

Comparison on the Dosimetry of TLD and PLD by Dose Area Product (DAP(Dose Area Product)를 이용한 TLD와 PLD의 선량 측정 비교)

  • Choi, Jae-Ho;Kang, Gu-Jun;Chang, Seo-Goo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2012
  • The results of analyzing the difference between performances of individual dosimeters on this research subjecting the PLD and TLD, which are the official personal dosimeters, through dosimetry are as follows. After scanning the integral dose using an automatic scanner, the values of two devices that went through dose adjustment process had a statistical difference in TLD and PLD measurements under each filming conditions which were 70kVp, 200mA, 0.012sec and 42kVp, 100mA, and 0.012sec (p<0.001 and p<0.001 respectively). As for the difference of measurement value between DAP and the two particles under 70kVp, 200mA, 0.012sec filming condition, TLD had a value lower than DAP average value by $44.2mGy{\cdot}cm^2$ and PLD had a value of $246.8mGy{\cdot}cm^2$ which was lower than DAP average value by $15.5mGy{\cdot}cm^2$, while under 42kVp, 100mA, 0.012sec filming condition, TLD had a value lower than DAP average value by $17.9mGy{\cdot}cm^2$ and PLD had a value of $82.6mGy{\cdot}cm^2$ which was lower than DAP average value by 7.6$mGy{\cdot}cm^2$. Also, compared to PLD, each of 10 devices measured dose value in TLD had a larger deviation between the particles, and for a reproducibility test which repeatedly measured one particle, PLD had ${\pm}1%$ which was lower than TLD's ${\pm}2%$. As such, PLD had a superior performance result in dose measurement capacities aspect compared to TLD, and therefore we could verify that PLD is more appropriate and advantageous in managing radiation-related task performing worker's personal radiation exposure management in the diagnostic radiation field.

A Comparision of the Radiation dose by Distance and the Direction according to a Tube Position of the C-arm Unit (C-arm의 Tube 위치에 따른 거리 및 방향별 피폭선량 비교)

  • Kim, Jin-Su;Woo, Bong-Cheol;Kim, Sung-Jin;Lee, Kwan-Sup;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • In operation room, the use of the C-arm unit is increasing. So, the radiation dose of the person who work in operation room was even more increased than before. Thus, this study is shown the measurement of expose dose and the way for decrease of the radiation dose by using the C-arm unit. The experiment was performed with the C-arm unit and used a phantom which is similar to tissue of the human body and fluoro-glass dosimeter for dose measurement. The expose dose were measured by the tube position(over tube, under tube) of the C-arm unit, distance(50, 100$\sim$200cm), direction(I, II, III, IV), runtime(1min, 3min), wearing of the apron. The radiation dose was decreased twice and three times at under tube rather than over tube. The I direction was measured 20$\sim$30% more than the others. The biggest expose dose is 50cm from center on distance. The expose dose is decreased to far from center. In case of Wearing of the apron, the radiation dose was decreased 60$\sim$90% by the distance. But there weren't change of the radiation dose by C-arm tube position. In present, by increasing the usage of the C-arm unit, the radiation dose is inevitable. So, this study recommends us to use the under tube of the C-arm unit. Also, Wearing of the apron is required for minimum of the radiation exposure.

  • PDF

A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom (Phantom을 이용한 뇌 관류 CT검사에서 방사선 피폭선량에 관한 연구)

  • Jung, Hong-Rynag;Kim, Ki-Jeong;Mo, Eun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.287-294
    • /
    • 2015
  • The purpose of this study, was Let's examine the exposure dose at the time of cerebral blood flow CT scan of acute ischemic stroke patients. In particular, long-term high doses of radiation sensitive organs and we Measured using phantom and a glass dosimeter. Apply the existing protocol suggested by the manufacturer (fixed time delay technique) and the proposed new convergence protocol (bolus tracking technique), reporting to measure the dose, dose reduction was to prepare the way. Results up to 39.8% as compared to the existing protocols in a new suggested convergence protocol, a minimum of 5.8% was long-term dose is reduced. Test dose of $CDTI_{vol}$ and DLP values decreased 25%, respectively, were measured at less than recommended dose. Try checking the protocol set out in the existing based on the analysis result of the above, by applying the proposed new convergence protocol by reducing the dose would have to contribute to improved public health. It is believed to be research continues to find the optimum protocol in the other tests.