• Title/Summary/Keyword: Gibbs' method

Search Result 204, Processing Time 0.025 seconds

Bayesian Analysis of Multivariate Threshold Animal Models Using Gibbs Sampling

  • Lee, Seung-Chun;Lee, Deukhwan
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.177-198
    • /
    • 2002
  • The estimation of variance components or variance ratios in linear model is an important issue in plant or animal breeding fields, and various estimation methods have been devised to estimate variance components or variance ratios. However, many traits of economic importance in those fields are observed as dichotomous or polychotomous outcomes. The usual estimation methods might not be appropriate for these cases. Recently threshold linear model is considered as an important tool to analyze discrete traits specially in animal breeding field. In this note, we consider a hierarchical Bayesian method for the threshold animal model. Gibbs sampler for making full Bayesian inferences about random effects as well as fixed effects is described to analyze jointly discrete traits and continuous traits. Numerical example of the model with two discrete ordered categorical traits, calving ease of calves from born by heifer and calving ease of calf from born by cow, and one normally distributed trait, birth weight, is provided.

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.

Empirical Statistical Power for Testing Multilocus Genotypic Effects under Unbalanced Designs Using a Gibbs Sampler

  • Lee, Chae-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1511-1514
    • /
    • 2012
  • Epistasis that may explain a large portion of the phenotypic variation for complex economic traits of animals has been ignored in many genetic association studies. A Baysian method was introduced to draw inferences about multilocus genotypic effects based on their marginal posterior distributions by a Gibbs sampler. A simulation study was conducted to provide statistical powers under various unbalanced designs by using this method. Data were simulated by combined designs of number of loci, within genotype variance, and sample size in unbalanced designs with or without null combined genotype cells. Mean empirical statistical power was estimated for testing posterior mean estimate of combined genotype effect. A practical example for obtaining empirical statistical power estimates with a given sample size was provided under unbalanced designs. The empirical statistical powers would be useful for determining an optimal design when interactive associations of multiple loci with complex phenotypes were examined.

Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks (인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구)

  • Kim, Donggu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

Estimation of Genetic Parameters via Gibbs Sampler using Animal Model for Economic Traits in Pigs (Gibbs Sampler를 이용한 돼지 주요 경제형질의 유전모수 추정)

  • Cho, K.H.;Kim, M.J.;Kim, I.C.;Jeon, G.J.
    • Journal of Animal Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • Heritability and genetic correlation for growth traits in Duroc pig breed were estimated using Bayesian method via Gibbs sampling. The data set consisted of 3,526 performance records at National Institute of Animal Science. For estimating those parameters using Gibbs sampling, 5,000 cycles of ‘burn-in’ period were discarded among a total of 55,000 samples. Out of the remaining 50,000 samples, 5,000 estimates by each parameter were retained and used for analyses to avoid any correlation among adjacent samples. The growth traits considered in this study were average daily gain at 30kg(ADG1), average daily gain at 90kg(ADG2), backfat thickness(BF), days to 90kg(D90) and feed conversion ratio(FC). The estimated heritabilities and their standard deviation using Gibbs sampler were 0.43±0.04, 0.49±0.038, 0.31±0.040, 0.48±0.039 and 0.62±0.086, respectively. Genetic correlations were -0.02, -0.13, -0.55 and -0.15 between ADG1 with ADG2, BF, D90 and FC, respectively, 0.16, -0.73, -0.32 between ADG2 with BF, D90 and FC respectively, 0.01, -0.08 between BF with D90, FC, respectively, and 0.23 between D90 with FC.

Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters (순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정)

  • 손영숙;김성욱
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.273-282
    • /
    • 2003
  • The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).

Translation-invariant Wavelet Denoising Method Based on a New Thresholding Function for Underwater Acoustic Measurement (수중 음향 측정을 위한 새로운 임계치 함수에 의한 TI 웨이블렛 잡음제거 기법)

  • Choi, Jae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1149-1157
    • /
    • 2006
  • Donoho et al. suggested a wavelet thresholding denoising method based on discrete wavelet transform. This paper proposes an improved denoising method using a new thresholding function based on translation-invariant wavelet for underwater acoustic measurement. The conventional wavelet thresholding denoising method causes Pseudo-Gibbs phenomena near singularities due to the lack of translation-invariant of the wavelet basis. To suppress Pseudo-Gibbs phenomena, a denoising method combining a new thresholding function based on the translation-invariant wavelet transform is proposed in this paper. The new thresholding function is a modified hard-thresholding to each node according to the discriminated threshold so as to reject unknown external noise and white gaussian noise. The experimental results show that the proposed method can effectively eliminate noise, extract characteristic information of radiated noise signals.

Reliability Estimation of a Two Mixture Exponential Model Using Gibbs sampler

  • Kim, Hee-Cheul;Kim, Pyong-Koo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.225-232
    • /
    • 1998
  • A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. This data augmentation approach facilitates the specification of the transitional measure in the Markov Chain. Bayesian analysis of the mixture exponential model discusses using the Gibbs sampler. Parameter and reliability estimators are obtained. A numerical study is provided.

  • PDF

DIMENSIONS OF A DERANGED CANTOR SET WITH SPECIFIC CONTRACTION RATIOS

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.269-274
    • /
    • 2004
  • We investigate a deranged Cantor set (a generalized Cantor set) using the similar method to find the dimensions of cookie-cutter repeller. That is, we will use a Gibbs measure which is a weak limit of a subsequence of discrete Borel measures to find the dimensions. The deranged Cantor set that will be considered is a generalized form of a perturbed Cantor set (a variation of the symmetric Cantor set) and a cookie-cutter repeller.