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INTRODUCTION 

 

Genetic architecture for complex economic traits of 

animals might be understood based on accurate estimates of 

interaction effects. However, the most parsimonious 

statistical models have been suggested in many analyses for 

genetic dissection of complex traits and the potential 

interaction effects were excluded in analytical models 

(Frankel and Schork, 1996). 

The classical epistatic model included all the possible 

genetic interaction effects among multiple loci. For example, 

a two-locus epistatic model included genetic interaction 

effect between locus 1 and locus 2 (I12), and a three-locus 

epistatic model included genetic interaction effects among 

locus 1, locus 2, and locus 3 (I12, I13, I23, I123). This led to a 

drawback of drastically reduced degrees of freedom with an 

increased number of loci. A restricted partition method as a 

nonparametric approach was recently developed for 

estimating epistasis, and it overcame the problem in the 

conventional epistatic analysis (Culverhouse et al., 2004).
  

More recently, a Bayesian approach using Gibbs 

sampling was proposed to overcome the shortage of degrees 

of freedom by treating the epistatic effects as random 

effects (Lee and Park, 2007). This parametric method 

dramatically reduced predictional errors in estimating 

interaction effects compared to the restricted partition 

method. A guideline was provided for experimental designs 

under various situations when conducting a genetic 

association study with multi-locus interaction effects by the 

Bayesian approach with a Gibbs sampler (Lee and Kim, 

2008). The simulation study for experimental designs was 

conducted to examine the accuracy of predicting the 

interaction effects and to estimate the corresponding 

statistical power, the probability of accepting true 

interaction effects, by the method. The degree of unbalance 

was, however, not considered in the study. 

In reality, the genetic data are most likely unbalanced. 

Furthermore, null combined genotype cells, i.e. combined 

genotypes with no observation in a multi-locus model, 

increase as the number of loci increases. In the current study, 

we conducted a simulation study to show empirical power 

and sample size for the use of the Bayesian method by 

Gibbs sampling under practical situations with a variety of 

unbalanced data including null combined genotype cells. 

Ultimately, the results will help to determine optimal 

designs for identifying genetic variants associated with 

complex traits. 
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MATERIALS AND METHODS 

 

Simulation 

A Monte Carlo simulation was conducted to generate 

unbalanced data with null combined genotype cells. 

Phenotype assuming 2-locus model to 5-locus model was 

generated as follows: yijk = ai+gj+ek where yijk is k
th

 

phenotypic value within fixed effect i and random effect j, 

ai is i
th

 fixed environmental effect, gj is j
th

 random combined 

genotype effect, and ek is k
th

 random error. The combined 

genotype effects assigned to the corresponding 9, 27, 81 

and 243 genotypes for 2-, 3-, 4-, and 5- locus models were 

generated from the Normal distribution with the variance of 

10, i.e. gj~N(0,10) where j = 1,…3
m
, m is the number of loci 

(= 2, 3, 4, or 5). The error was also generated from the 

Normal distribution with the variance ranged from 10 to 40. 

Simulation was devised under various unbalanced designs 

(mild, medium, and strong). Their average sample size for 

each genotype was 5, 10, 15, …, or 100. Portions of null 

combined genotype cells ranged from 0 to 50% with an 

increment of 5%. A total of 42,240 data sets were simulated 

from combinations of number of loci (4 levels), variance 

within genotype (16 levels), sample size (20 levels), degree 

of unbalance (3 levels), and portions of null combined 

genotype cells (11 levels). One hundred replicates were 

simulated for each set. A random number generator based 

on the Box-Muller method was used to generate random 

Gaussian deviates (Press et al., 1992). 

 

Analytical method 

The simulated data were analyzed by the Bayesian 

method by Gibbs sampling to estimate genetic parameters 

in multilocus epistatic models. This method was devised to 

draw inferences about the epistatic effects based on their 

marginal posterior distributions and to attain the 

marginalization of the joint posterior distribution through 

Gibbs sampling (Lee and Park, 2007). We conducted the 

Gibbs sampling by intensive iterations of sampling from 

full conditional posterior distributions as follows: 

 

i) Set arbitrary initial values for fixed effects (a), 

random genotype effects (g), genotypic variance component 

( 2

g ), and residual variance component ( 2

e ).  

ii) Generate and update residual variance component 

using the following full conditional posterior distribution. 
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where n is the number of phenotypic observations, 2

e  

is residual variance component, a is the vector of fixed 

effects, g is the vector of random genotype effects, and y is 

the vector of phenotypes. IG [.] indicates inverse Gamma 

distribution, and e and e are scale and shape parameters 

for the prior distribution of 2

e . X and Z are known design 

matrices relating the fixed and random effects to their 

corresponding phenotypes.  

iii) Generate and update genotypic variance component 

using the following full conditional posterior distribution. 
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where g and g are scale and shape parameters for the 

prior distribution of 2

g .  

iv) Generate and update random genotype effects using 

the following full conditional posterior distribution. For 

example, generate and update g1, generate and update g2, …, 

and generate and update m3
g

. 
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where nij is the number of records within the fixed effect i 

and the genotype effect j. 

v) Generate and update fixed effects using the following 

full conditional posterior distribution. 
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vi) Repeat steps i) through v). 

The Gibbs sampling was run a total of 52,000 iteration 

rounds. Samples generated from a warming-up period of the 

first 2,000 rounds were all removed to avoid a noise before 

convergence. Only samples at every 50 rounds after the 

warming-up period were retained to reduce lag correlation 

among the thinned samples. 

 

RESULTS AND DISCUSSION 

 

Statistical power estimates 

Empirical statistical powers were estimated by testing 

genotypic difference from the unbalanced data simulated 

with 2 to 5 loci by the Bayesian method by Gibbs sampling. 

For example, the empirical statistical powers are presented 

for mildly (Figure 1A) and strongly (Figure 1B) unbalanced 

data. The power estimate obtained from the strongly 
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unbalanced data was smaller than the corresponding 

estimate from the mildly unbalanced data regardless of the 

sample size, the number of loci, and within genotype 

variance. Of course, power estimates obtained from the 

balanced data by Lee and Kim (2008) were closer to those 

from the mildly unbalanced data than those from the 

strongly unbalanced data. The power estimates increased 

with a reduced number of loci or with a reduced within 

genotype variance. This concurred with results of the study 

in which powers were estimated under balanced designs 

(Lee and Kim, 2008). The frequency of null combined 

genotype cells influenced the statistical power estimates. If 

half of the combined genotype cells were null, then the 

power increased as shown in Figure 1C.  

The mean empirical statistical powers estimated in the 

current study highlight the heterogeneous statistical powers 

in unbalanced designs under a range of plausible scenarios. 

This critical influence of the unbalanced designs on 

statistical power could be strengthened by the study of 

Wang et al. (2012) where the identification of genetic 

association with heading date of barley depended on the 

degree of balance. The estimates obtained in the current 

study might be applied to finding an optimal design for 

estimating and testing multi-locus interaction effects. The 

sample size and the number of loci would be important 

components affecting the statistical power in practice. This 

study also suggested the Baysian method using a Gibbs 

sampler for testing epistatic effects among limited number 

(up to 4) of loci. 

 

A practical example 

Consider a practical example for experimenters to apply 

the statistical power estimates in an epistatic association 

study. Let’s assume a research plan to determine a statistical 

power with the given sample size of 800. Assuming a 

heritability of 0.25, the power is predicted as 0.83 for 

mildly unbalanced data and as 0.76 for strongly unbalanced 

data. They are obtained from Figure 1 and 2 because the 

sample size of 800 corresponds to MSSG = 89 and the 

heritability of 0.25 corresponds to WGV = 30. This 

practical guideline for determining the optimal sample size 

with a given power would be useful for population 

geneticists to apply the method in genetic association 

studies. 

 

Concluding remarks 

Epistasis that has been ignored in most genetic 

association studies might explain a large portion of genetic 

variation for complex traits. Furthermore, epistasis more 

clearly explains associations with individual variants (Chen 

 
Figure 1. Empirical power for testing combined genotype difference from simulated data using (A) mildly unbalanced 4-locus design 

with 0% null combined genotype cells, (B) strongly unbalanced 4-locus design with 0% null combined genotype cells, and (C) strongly 

unbalanced 4-locus design with 50% null combined genotype cells. The power was estimated with the false positive probability of 0.05. 

WGV stands for within genotype variance, and MSSG stands for mean sample size for genotype. 
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and Ishwaran, 2012). For example, a redundant epistasis 

might disclose a spurious effect produced by linkage or 

confounding among variants. Although estimates of 

epistatic effects do not entirely reflect biological 

interactions (He et al., 2010), an accurate estimation of the 

epistasis would be of value in identifying the genetic factors 

for complex traits. Efficient identification of genetic factors 

with epistasis greatly depends on determining power and 

the corresponding optimal sample size (Lee and Kim, 2008). 

Especially, this issue becomes more critical under 

unbalanced designs (Wang et al., 2012). Statistical powers 

and the practical guideline in the current study would be 

useful for determining the optimal sample size with a given 

power in genetic association studies. This would be helpful 

in meeting the need for increased sample size in 

genomewide association analysis, which is accelerating due 

to a rapid development of sequencing technology and an 

increase of variants in the analysis. However, the current 

study was restricted to some specific unbalanced designs. A 

generalized computer program would be in order for 

determining an optimal design by degree of unbalance and 

further for dealing with user-created designs. 
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