• 제목/요약/키워드: Gibberellins analysis

검색결과 27건 처리시간 0.025초

식물뿌리내부에 존재하는 지베렐린 생산균 분리와 동정 (Isolation and Identification of Fungal Strains Producing Gibberellins from the Root of plants)

  • 임순옥;이진형;수메라 아프잘 칸;이인중;이인구;이경수;김종국
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.357-363
    • /
    • 2007
  • 249 fungal strains were isolated from the roots of 26 plants, and the production of GAs was spectrophotometric ally examined. As a result 76 fungal strains were shown to produce GAs. Bioassay of culture broth from seventy six fungal strains producing GAs was carried out with waito-c rice, that is dwarf rice. The seventy six fungi with GAs-producing activity were incubated for seven days in 40 mL of Czapek's liquid medium at $30^{\circ}C$ and 180 rpm, and the culture broth of fungi were treated on the 2-leaf rice sprout. Fifteen of these showed plant growth promoting activity and the amount of each GAs in the medium was measured by Gas chromatographymass spectrometer (GC-MS). Nine of these fungi were also identified by genetic analysis of the nucleotide sequences in the internal transcribed spacer region of the ribosomal DNA.

Endophytic Fungi of Salt-Tolerant Plants: Diversity and Ability to Promote Plant Growth

  • Khalmuratova, Irina;Choi, Doo-Ho;Kim, Jong-Guk;Lee, In–Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1526-1532
    • /
    • 2021
  • Suaeda australis, Phragmites australis, Suaeda maritima, Suaeda glauca Bunge, and Limonium tetragonum in the Seocheon salt marsh on the west coast of the Korean Penincula were sampled in order to identify the endophytes inhabiting the roots. A total of 128 endophytic fungal isolates belonging to 31 different genera were identified using the fungal internal transcribed spacer (ITS) regions and the 5.8S ribosomal RNA gene. Fusarium, Paraconiothyrium and Alternaria were the most commonly isolated genera in the plant root samples. Various diversity indicators were used to assess the diversity of the isolated fungi. Pure cultures containing each of the 128 endophytic fungi, respectively, were tested for the plant growth-promoting abilities of the fungus on Waito-C rice germinals. The culture filtrate of the isolate Lt-1-3-3 significantly increased the growth of shoots compared to the shoots treated with the control. Lt-1-3-3 culture filtrate was analyzed and showed the presence of gibberellins (GA1 2.487 ng/ml, GA3 2.592 ng/ml, GA9 3.998, and GA24 6.191 ng/ml). The culture filtrate from the Lt-1-3-3 fungal isolate produced greater amounts of GA9 and GA24 than the wild-type Gibberella fujikuroi, a fungus known to produce large amounts of gibberellins. By the molecular analysis, fungal isolate Lt-1-3-3 was identified as Gibberella intermedia, with 100% similarity.

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Gibberellin Production by Newly Isolated Strain Leifsonia soli SE134 and Its Potential to Promote Plant Growth

  • Kang, Sang-Mo;Khan, Abdul Latif;You, Young-Hyun;Kim, Jong-Guk;Kamran, Muhammad;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.106-112
    • /
    • 2014
  • Very few plant growth-promoting rhizobacteria (PGPR) are known to produce gibberellins (GAs). The current study aimed to isolate a phytohormone-producing PGP rhizobacterium from soil and assess its potential to enhance plant growth. The newly isolated bacterium was identified as Leifsonia soli sp. SE134 on the basis of partial 16S ribosomal RNA gene sequence. Application of L. soli culture filtrate significantly increased the biomass, hypocotyl, and root lengths of cucumber seeds as compared with non-inoculated sole medium and distilled water treated controls. Furthermore, the PGPR culture was applied to the GA-deficient mutant rice cultivar Waito-C. Treatment with L. soli SE134 significantly increased the growth of Waito-C rice seedlings as compared with controls. Upon chromatographic analysis of L. soli culture, we isolated, detected and quantified different GAs; namely, $GA_1$ ($0.61{\pm}0.15$), $GA_4$ ($1.58{\pm}0.26$), $GA_7$ ($0.54{\pm}0.18$), $GA_8$ ($0.98{\pm}0.15$), $GA_9$ ($0.45{\pm}0.17$), $GA_{12}$ ($0.64{\pm}0.21$), $GA_{19}$ ($0.18{\pm}0.09$), $GA_{20}$ ($0.78{\pm}0.15$), $GA_{24}$ ($0.38{\pm}0.09$), $GA_{34}$ ($0.35{\pm}0.10$), and $GA_{53}$ ($0.17{\pm}0.05$). Plant growth promotion in cucumber, tomato, and young radish plants further evidenced the potential of this strain as a PGP bacterium. The results suggest that GA secretion by L. soli SE134 might prove advantageous for its ameliorative role in crop growth. These findings can be extended for improving the productivity of different crops under diverse environmental conditions.

Gibberellins enhance plant growth and ginsenoside content in Panax ginseng

  • Hong, Chang Pyo;Jang, Gwi Yeong;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.186-192
    • /
    • 2021
  • The roots of Korean ginseng (Panax ginseng) have a long history of usage as a medicinal drug. Ginsenosides, a group of triterpenioid saponins in ginseng, have been reported to show important pharmacological effects. Many studies have attempted to identify the ginsenoside synthesis pathways of P. ginseng and to increase crop productivity. Recent studies have shown that exogenous gibberellin (GA) treatments promote storage root secondary growth by integration of the modulating cambium stem cell homeostasis with a secondary cell wall-related gene network. However, the dynamic regulation of ginsenoside synthesis-related genes and their contents by external signaling cues has been rarely evaluated. In this study, we confirmed that GA treatment not only enhanced the secondary growth of P. ginseng storage roots, but also significantly enriched the terpenoid biosynthesis process in RNA-seq analysis. Consistently, we also found that the expression of most genes involved in the ginsenoside synthesis pathways, including those encoding methylerythritol-4-phosphate (MEP) and mevalonate (MVA), and the saponin content in both leaves and roots was increased by exogenous GA application. These results can be used in future development of biotechnology for ginseng breeding and enhancement of saponin content.

Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay

  • You, Young-Hyun;Yoon, Hyeokjun;Kang, Sang-Mo;Shin, Jae-Ho;Choo, Yeon-Sik;Lee, In-Jung;Lee, Jin-Man;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1549-1556
    • /
    • 2012
  • Endophytic fungi were isolated from roots of six halophytes in Suncheon Bay. The endophytic fungi of 35 species isolated from halophytes were identified by internal transcribed spacer (ITS) containing the ITS1, 5.8s, and ITS2 regions. All fungal strains were analyzed to diversity at the genus level. Fungal culture filtrates (FCF) of endophytic fungi were treated to Waito-c rice (WR) seedling for plant growth-promoting verification. It was confirmed that fungal strain Sj-2-2 provided plant growth promotion (PGP) to WR seedling. Then, PGP of Suaeda japonica was confirmed by treating culture filtrate of Sj-2-2. As a result, it was verified that culture filtrate of Sj-2-2 had more advanced PGP than positive control when treated to S. japonica. The secondary metabolites involved in culture filtrate of Sj-2-2 were identified by HPLC and GC-MS SIM analysis. The presence of physiologically bioactive gibberellins (GAs) and other inactive GAs in culture filtrate of Sj-2-2 was detected. The molecular analysis of sequences of Sj-2-2 showed the similarity to Penicillium sp. of 99% homology. The PGP of Sj-2-2 as well as symbiosis between endophytic fungi and halophytes growing naturally in salt marsh was confirmed. Sj-2-2 was identified as a new fungal strain producing GAs by molecular analysis of sequences. Consequently, the Sj-2-2 fungal strain was named as Penicillium sp. Sj-2-2. In this study, the diversity of endophytic fungi isolated from roots of halophytes in salt marsh and the PGP of a new gibberellin-producing fungal strain were confirmed.

Fusarium proliferatum KGL0401 as a New Gibberellin-Producing Fungus

  • Rim, Soon-Ok;Lee, Jin-Hyung;Choi, Wha-Youl;Hwang, Seon-Kap;Seok, Jong-Suh;Lee, In-Joong;Rhee, In-Koo;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.809-814
    • /
    • 2005
  • Gibberellins (GAs) play an important role in plant growth and development. Fifteen fungi were isolated from Physalis alkekengi var francheti plant roots, and among them, four isolates showed GA-production activity. A bioassay using waito-c rice was carried out with the culture fluid of the GA-producing fungi. The GA-producing fungi were cultured for 7 days in Czapek's liquid medium at $30^{\circ}C$, 120 rpm, under dark conditions. The culture broth was concentrated 30-fold and 10 ${\mu}l$ of that concentrate was applied to 2-leaf rice sprouts. The height of the rice seedlings treated with the culture fluid of isolate PA08 was 26 cm high, while that of the seedlings treated with the wild-type Gibberella fujikuroi was 13 cm high. As such, the plant growth-promoting activity exhibited by isolate PA08 was 2 times stronger than that exhibited by the wild-type G fujikuroi. The amounts of $GA_l,\;GA_3,\;GA_4,\;GA_7,\;GA_9,\;GA_{20}$, and $GA_{24}$ in the medium were measured using gas chromatography-mass spectrometry (GC-MS), and the quantities produced by isolate PA08 were 4.85 ng/ml, 4.79 ng/ml, 17.30 ng/ml, 6.01 ng/ml, 16.61 ng/ ml, 0.08 ng/ml, and 17.30 ng/ml, respectively. Isolate PA08 was also identified as Fusarium proliferatum KGL0401 by a genetic analysis of the nucleotide sequences of the internal transcribed spacer region of the ribosomal DNA.

Functional characterization of gibberellin signaling-related genes in Panax ginseng

  • Kim, Jinsoo;Shin, Woo-Ri;Kim, Yang-Hoon;Shim, Donghwan;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.148-155
    • /
    • 2021
  • Gibberellins (GAs) are essential phytohormones for plant growth that influence developmental processes and crop yields. Recent functional genomic analyses of model plants have yielded good characterizations of the canonical GA signaling pathways and related genes. Although Panax ginseng has long been considered to have economic and medicinal importance, functional genomic studies of the GA signaling pathways in this crucial perennial herb plant have been rarely conducted. Here, we identified and performed functional analysis of the GA signaling-related genes, including PgGID1s, PgSLY1s, and PgRGAs. We confirmed that the physiological role of GA signaling components in P. ginseng was evolutionarily conserved. In addition, the important functional domains and amino acid residues for protein interactions among active GA, GID1, SCFSLY1, and RGA were also functionally conserved. Prediction and comparison of crystallographic structural similarities between PgGID1s and AtGID1a supported their function as GA receptors. Moreover, the subcellular localization and GA-dependent promotion of DELLA degradation in P. ginseng was similar to the canonical GA signaling pathways in other plants. Finally, we found that overexpression of PgRGA2 and PgSLY1-1 was sufficient to complement the GA-related phenotypes of atgid1a/c double- and rga quintuple-mutants, respectively. This critical information for these GA signaling genes has the potential to facilitate future genetic engineering and breeding of P. ginseng for increased crop yield and production of useful substances.

독도 번행초에서 분리된 내생균류의 배양적 특성과 Aspergillus tubingensis YH103의 gibberellin A7의 생산 (Gibberellin A7 production by Aspergillus tubingensis YH103 and cultural characteristics of endophytic fungi isolated from Tetragonia tetragonoides in Dokdo islands)

  • 유영현;박종명;임성환;강상모;박종한;이인중;김종국
    • 미생물학회지
    • /
    • 제52권1호
    • /
    • pp.32-39
    • /
    • 2016
  • 독도에 자생하는 번행초의 뿌리로부터 순수 분리하여 형태적으로 상이한 17개의 내생균류를 선별하였다. 또한 분리된 균류들에 대하여 각각의 염농도와 pH 농도 구배에 따라 생장 시험을 확인하였다. 내생균류에 대해 각각 난장이벼의 유묘에 식물생장활성시험을 진행하였고, 그 결과 YH103 균주가 가장 높은 활성을 나타내었다. 계통분석은 Maximum likelihood 방법을 활용하여 결합된 ITS영역, beta-tubulin 및 calmodulin 유전자 염기서열을 분석하여 분리된 균주의 유연관계를 분석하였다. YH103 균주의 배양여과액을 HPLC와 GC/MS SIM을 이용하여 분석한 결과 식물호르몬인 지베렐린 $GA_4$, $GA_7$, $GA_8$$GA_{19}$가 확인되었다. 최종적으로 YH103 균주의 형태학적 관찰 및 결합된 유전자 염기서열의 분자적 분석을 통해 GA를 생산하는 새로운 Aspergillus tubingensis로 동정되었다.

HPLC/UV-vis을 이용한 과일류 중의 지베렐린 산 분석 (Analysis of gibberellic acid from fruits using HPLC/UV-vis)

  • 마경나;조현우;명승운
    • 분석과학
    • /
    • 제26권1호
    • /
    • pp.19-26
    • /
    • 2013
  • 자외선 흡광도가 거의 없는 농작물의 생장 조절용 농약으로 사용되고 있는 지베렐린(GAs) 중 하나인 지베렐린 산($GA_3$)은 발색단이 미약해서 자외선 검출기를 이용하여 분석하기가 어려운 물질이다. 액체-액체 추출법을 이용하여 과일류로부터 지베렐린 산을 효과적으로 추출하기 위하여 시료의 pH와 추출용매에 대한 최적의 추출조건을 확립하고자 하였다. 페나실 브로마이드를 유도체화 시약으로 사용함으로써 자외선 검출기에 선택적이며 감도가 좋은 $GA_3$-유도체 화합물을 만들었으며, 최적의 유도체화 조건을 확립하기 위해서 반응온도 및 시간, 유도체화 시약의 양, 염기의 양 등을 변화시켜주는 실험이 수행되었다. 유도체화 된 $GA_3$는 C18 컬럼을 사용하여 방해물질이 없이 HPLC/UV-vis로 효과적으로 분석되었으며, HPLC/ESI-MS를 사용하여 유도체화된 화합물의 구조를 확인하였다. 사과의 경우, 검출한계(LOD)와 정량한계(LOQ)는 각각 0.008 mg/kg, 0.027 mg/kg로, 배의 경우, 검출한계(LOD)와 정량한계(LOQ)는 각각 0.003 mg/kg, 0.012 mg/kg로 낮은 검출한계와 정량한계를 보였다. 확립된 유도체화 방법은 과일류 중에 존재하는 $GA_3$의 효과적이고 편리한 분석에 응용될 수 있을 것이다.