DOI QR코드

DOI QR Code

Analysis of gibberellic acid from fruits using HPLC/UV-vis

HPLC/UV-vis을 이용한 과일류 중의 지베렐린 산 분석

  • Received : 2012.08.23
  • Accepted : 2012.12.19
  • Published : 2013.02.25

Abstract

Gibberllic acid ($GA_3$) is one of gibberellins (GAs) that are a class of plant growth hormones that exert profound and diverse effects on plant growth and development. $GA_3$ is essentially non-UV absorbing and is difficult to assay by UV-detector. For effective extraction of gibberellic acid from fruits by using liquid-liquid extraction, optimized pH and extraction solvent were established. The selective and sensitive derivative of $GA_3$ for HPLC/UV-vis was derivatized using phenacyl bromide, and the experimental factors, including reaction time, reaction temperature and amount of derivatizing reagent and base were investigated for the effective synthesis. The derivatized $GA_3$ with phenacyl bromide was effectively analyzed by HPLC/UV-vis. The structure of derivatized $GA_3$ was confirmed by HPLC/ESI-MS. For apple, LOD and LOQ were 0.008 mg/kg and 0.027 mg/kg, respectively. For pear, LOD and LOQ were 0.003 mg/kg, 0.012 mg/kg, respectively. The established method can be applied to more effective analysis of $GA_3$ from plant and food.

자외선 흡광도가 거의 없는 농작물의 생장 조절용 농약으로 사용되고 있는 지베렐린(GAs) 중 하나인 지베렐린 산($GA_3$)은 발색단이 미약해서 자외선 검출기를 이용하여 분석하기가 어려운 물질이다. 액체-액체 추출법을 이용하여 과일류로부터 지베렐린 산을 효과적으로 추출하기 위하여 시료의 pH와 추출용매에 대한 최적의 추출조건을 확립하고자 하였다. 페나실 브로마이드를 유도체화 시약으로 사용함으로써 자외선 검출기에 선택적이며 감도가 좋은 $GA_3$-유도체 화합물을 만들었으며, 최적의 유도체화 조건을 확립하기 위해서 반응온도 및 시간, 유도체화 시약의 양, 염기의 양 등을 변화시켜주는 실험이 수행되었다. 유도체화 된 $GA_3$는 C18 컬럼을 사용하여 방해물질이 없이 HPLC/UV-vis로 효과적으로 분석되었으며, HPLC/ESI-MS를 사용하여 유도체화된 화합물의 구조를 확인하였다. 사과의 경우, 검출한계(LOD)와 정량한계(LOQ)는 각각 0.008 mg/kg, 0.027 mg/kg로, 배의 경우, 검출한계(LOD)와 정량한계(LOQ)는 각각 0.003 mg/kg, 0.012 mg/kg로 낮은 검출한계와 정량한계를 보였다. 확립된 유도체화 방법은 과일류 중에 존재하는 $GA_3$의 효과적이고 편리한 분석에 응용될 수 있을 것이다.

Keywords

References

  1. W. Xie, C. Han, Z. Zheng, X. Chen, Y. Qian, H. Ding, L. Shi and C. Lv, Food Chem., 127, 890-892 (2011). https://doi.org/10.1016/j.foodchem.2011.01.018
  2. Z. Ma, L. Ge, A. S. Y. Lee, J. W. H. Yong, S. N. Tan and E. S. Ong, Anal. Chim, Acta., 610, 274-281 (2008). https://doi.org/10.1016/j.aca.2008.01.045
  3. S. W. Johnson and C. R. Coolbaugh, Plant Physiol., 94, 1696-1701 (1990). https://doi.org/10.1104/pp.94.4.1696
  4. P. Tansupo, P. Suwannasom, D. L. Luthria, S. Chanthai and C. Ruangviriyachai, Phytochem, Anal., 21, 157-162 (2010).
  5. G. Castillo and S. Martinez, J. Chromatogr. A, 782, 137-139 (1997). https://doi.org/10.1016/S0021-9673(97)00427-5
  6. M. Kelen, E. C. Demiralay, S. Sen and G. Ozkan, Turk J Chem., 28, 603-610 (2004).
  7. D. Weiss, A. Luit, E. Knegt, E. Vermeer, J. N. M. Mol and J. M. Kooter, Plant Physiol., 107, 695-702 (1995). https://doi.org/10.1104/pp.107.3.695
  8. T. Moritz, J. J. Philipson and P. C. Oden, Plant Physiol., 93, 476-1481 (1990).
  9. P. C. Oden, L. Schwenen and J. E. Graebe, Plant Physiol., 84, 516-519 (1987). https://doi.org/10.1104/pp.84.2.516
  10. C. Birkemeyer, A. Kolasa and J. Kopka, J. Chromatogr. A, 993, 89-102 (2003). https://doi.org/10.1016/S0021-9673(03)00356-X
  11. X. Pan, R. Welti and X. Wang, Phyochem., 69, 1773- 1781 (2008). https://doi.org/10.1016/j.phytochem.2008.02.008
  12. M. Stephan, F. Bangerth and G. Schneider, Plant Growth Regul., 28, 55-58 (1999). https://doi.org/10.1023/A:1006211309707
  13. S. D. S. Chiwocha, S. R. Abrams, S. J. Ambrose, A. J. Cutler, M. Loewen, A. R. S. Ross and A. R. Kermode, The Plant J., 35, 405-417 (2003). https://doi.org/10.1046/j.1365-313X.2003.01800.x
  14. Y-H Li, F. Wei, X-Y Dong, J-H Peng, S-Y Liu and H Chen, Phytochem. Anal., 22, 442-449 (2011). https://doi.org/10.1002/pca.1300
  15. M. I. A. Flores, R. Romero-Gonzalez, A. G. Frenich and J. L. M. Vidal. J. Sep. Sci., 34, 1517-1524 (2011). https://doi.org/10.1002/jssc.201100093
  16. S. Hou, J. Zhu, M. Ding and G. Lv, Talanta, 76, 798-802 (2008). https://doi.org/10.1016/j.talanta.2008.04.041
  17. S. Fan, X. Wang, P. Li, Q. Zhang and W. Zhang, J. Sep. Sci., 34, 640-650 (2011). https://doi.org/10.1002/jssc.201000541
  18. A. Kazmierczak, Acta Physioligiae Plantarum, 21, 345-348 (1999). https://doi.org/10.1007/s11738-999-0005-0
  19. L. Ge, C. Y. C. Peh, J. W. H. Yong, S. N. Tan, L. Hua and E. S. Ong, J. Chromatogr. A, 1159, 242-249 (2007). https://doi.org/10.1016/j.chroma.2007.05.041
  20. Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi and E. Fukusakl, Anal. Chem. Acta., 648, 215 (2009). https://doi.org/10.1016/j.aca.2009.07.001
  21. K-H Park, J. Korean Agricultural Chemical Society, 28, 2 (1985).
  22. S. D. Seeley and L. E. Powell, Anal. Biochem, 58, 39- 46 (1974). https://doi.org/10.1016/0003-2697(74)90438-2
  23. T. Stephen, M. Paul E. and H. Charles L., J. Chromatogr. A, 299, 365-376 (1984). https://doi.org/10.1016/S0021-9673(01)97852-5
  24. C. Federica, G. Carfagnini, C. Antonio Di and S. Roberto, J. Chromatogr. A, 362, 47-53 (1986). https://doi.org/10.1016/S0021-9673(01)86949-1
  25. E. Metatsi, M. C. Gennaro, C. Baiocchi and M. Savigliano, J. Chromatogr. A, 322, 177-189 (1985). https://doi.org/10.1016/S0021-9673(01)97670-8
  26. A. Mehta, A. M. Oeser and G. Carlson, J. Chromatogr. B, 719, 9-23 (1998). https://doi.org/10.1016/S0378-4347(98)00403-4
  27. M-S. Shiao and Y-Y. Hao, Bot. Bull. Academia Sinica, 26, 105-111 (1985).

Cited by

  1. Simultaneous Determination and Optimization Ultrasound-Assisted Extraction of Poncirin and Naringin in Poncirus trifoliata Rafinesqul vol.22, pp.2, 2014, https://doi.org/10.7783/KJMCS.2014.22.2.147