• 제목/요약/키워드: Gesture Recognition Technology

검색결과 144건 처리시간 0.018초

CNN-based Gesture Recognition using Motion History Image

  • Koh, Youjin;Kim, Taewon;Hong, Min;Choi, Yoo-Joo
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.

동작 인식 게임의 융합 발전 방향 (A Study on Convergence Development Direction of Gesture Recognition Game)

  • 이면재
    • 한국융합학회논문지
    • /
    • 제5권4호
    • /
    • pp.1-7
    • /
    • 2014
  • 동작 인식은 동작을 인식하여 처리하는 기술로 사용자에게 편이성과 직관성을 제공한다. 이러한 장점 때문에 동작 인식 기술은 군사, 의료, 교육 등 여러 분야에 융합되어 응용되고 있다. 특히, 게임 분야에서 동작 인식은 실제 동작과 유사하게 플레이할 수 있다는 장점 때문에, 의료, 군사, 교육 등의 분야와 융합되어지고 있다. 본 논문은 이러한 배경을 바탕으로 동작 인식 게임의 융합 발전 방향을 논하기 위한 것이다. 이를 위하여 본 논문에서는 동작 인식 기술 현황과 게임을 살펴보고 동작 인식 게임의 문제점과 개선 방안을 기술한다. 본 논문은 국내 동작 인식게임의 융합 경쟁력을 향상시키는데 도움을 줄 수 있다.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Implementation of Non-Contact Gesture Recognition System Using Proximity-based Sensors

  • Lee, Kwangjae
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.106-111
    • /
    • 2020
  • In this paper, we propose the non-contact gesture recognition system and algorithm using proximity-based sensors. The system uses four IR receiving photodiode embedded on a single chip and an IR LED for small area. The goal of this paper is to use the proposed algorithm to solve the problem associated with bringing the four IR receivers close to each other and to implement a gesture sensor capable of recognizing eight directional gestures from a distance of 10cm and above. The proposed system was implemented on a FPGA board using Verilog HDL with Android host board. As a result of the implementation, a 2-D swipe gesture of fingers and palms of 3cm and 15cm width was recognized, and a recognition rate of more than 97% was achieved under various conditions. The proposed system is a low-power and non-contact HMI system that recognizes a simple but accurate motion. It can be used as an auxiliary interface to use simple functions such as calls, music, and games for portable devices using batteries.

Hand Gesture Recognition Suitable for Wearable Devices using Flexible Epidermal Tactile Sensor Array

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1732-1739
    • /
    • 2018
  • With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.

2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구 (Improvement of Gesture Recognition using 2-stage HMM)

  • 정훤재;박현준;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

Road Traffic Control Gesture Recognition using Depth Images

  • Le, Quoc Khanh;Pham, Chinh Huu;Le, Thanh Ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a system used to automatically recognize the road traffic control gestures of police officers. In this approach,the control gestures of traffic police officers are captured in the form of depth images.A human skeleton is then constructed using a kinematic model. The feature vector describing a traffic control gesture is built from the relative angles found amongst the joints of the constructed human skeleton. We utilize Support Vector Machines (SVMs) to perform the gesture recognition. Experiments show that our proposed method is robust and efficient and is suitable for real-time application. We also present a testbed system based on the SVMs trained data for real-time traffic gesture recognition.

  • PDF

USB 카메라 영상에서 DP 매칭을 이용한 사용자의 손 동작 인식 (Hand Gesture Recognition using DP Matching from USB Camera Video)

  • 하진영;변민우;김진식
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.47-54
    • /
    • 2009
  • In this paper, we proposed hand detection and hand gesture recognition from USB camera video. Firstly, we extract hand region extraction using skin color information from a difference images. Background image is initially stored and extracted from the input images in order to reduce problems from complex backgrounds. After that, 16-directional chain code sequence is computed from the tracking of hand motion. These chain code sequences are compared with pre-trained models using DP matching. Our hand gesture recognition system can be used to control PowerPoint slides or applied to multimedia education systems. We got 92% hand region extraction accuracy and 82.5% gesture recognition accuracy, respectively.

  • PDF

PC User Authentication using Hand Gesture Recognition and Challenge-Response

  • Shin, Sang-Min;Kim, Minsoo
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.79-87
    • /
    • 2018
  • The current PC user authentication uses character password based on user's knowledge. However, this can easily be exploited by password cracking or key-logging programs. In addition, the use of a difficult password and the periodic change of the password make it easy for the user to mistake exposing the password around the PC because it is difficult for the user to remember the password. In order to overcome this, we propose user gesture recognition and challenge-response authentication. We apply user's hand gesture instead of character password. In the challenge-response method, authentication is performed in the form of responding to a quiz, rather than using the same password every time. To apply the hand gesture to challenge-response authentication, the gesture is recognized and symbolized to be used in the quiz response. So we show that this method can be applied to PC user authentication.

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.