• Title/Summary/Keyword: Geothermal heat pumps

Search Result 57, Processing Time 0.023 seconds

Thermo-fluid engineering in deep geothermal energy

  • Kim, Yeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF

Heating Performance Analysis of Building Integrated Geothermal System (건물일체형 지열히트펌프시스템의 난방 성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.206-210
    • /
    • 2012
  • Ground source heat pump is a central heating and cooling system that pumps heat to or from the ground. Building Integrated Geothermal system used in this experiment is one of the Ground Source Heat Pump Systems which utilize energy pile. The purpose of this study is to evaluate heating performance of the system. The building is a low-energy experiment apartment in Yonsei University Songdo Campus and the subject is one of the energy reduced houses in this apartment. In the experiment, indoor temperature, outdoor temperature and the inlet and outlet temperature of ground heat exchanger and subject model, were measured. Then the heat pump's Coefficient of performance(COP) of the heat pump was calculated. As a result, the COP of heat pump is 4-5. Although the depth of the ground heat exchanger in this experiment is shallower than usual heat exchanger, the result of heating performance of this system was good as well.

  • PDF

Performance Simulation of Geothermal Heat Pump (GHP) System with Different Control Schemes (제어 방식에 따른 지열 히트펌프 시스템의 성능 시뮬레이션)

  • Lee, Doo-Young;Choi, Jae-Ho;Min, Kyong-Chon;Sohn, Byonghu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Geothermal heat pump (GHP) systems have been proved to be one of the most efficient systems for heating and cooling in buildings. However, an optimal energy performance depends on a good control of the system components, including heat pumps and circulation pumps, which affect to the total energy consumption of system. This paper presents the simulation results of the heat pump performance for two different control schemes, i.e. constant setting temperature (Control-A) and variable setting temperatures (Control-B) in buffer tank. A dynamic simulation tool, TRNSYS 17, was used to model the entire system and to assess the performance of the system. Simulation results show that the Control-B, which controls the temperature in buffer tank with outdoor air temperature, is a effective way to reduce the energy consumptions in heat pump (7.7%) and circulation pump (7.5%).

A Study on Performance Evaluation of a Vertically Closed Deep Geothermal Circulation Simulator (수직 밀폐형 심부지열 순환 시뮬레이터의 성능 평가에 관한 연구)

  • Bae, Jung-Hyeong;Lee, Dong-Woon;Yoon, Chung-Man;Ryoo, Yeon-Su;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.8-17
    • /
    • 2016
  • While greenhouses have been utilized as a sustainable alternative to traditional soil farming, they are often powered by diesel boilers that necessitate vast amounts of non-renewable energy and emit toxic fumes. Thus, geothermal heat pumps have been proposed as a more energy-efficient substitution for diesel boilers. Currently, most horticultural facilities in the United States use shallow geothermal systems, and are often equipped with horizontal underground heat exchangers as well as heat pump equipment. These shallow geothermal systems require a large drilling site and heat pump to function, which results in high maintenance costs. The heat pump itself consumes a large amount of power, which degrades system performance. Conversely, high temperatures can be attained within a single borehole in deep geothermal vertical closing systems without using a heat pump. This setup can dramatically reduce the power consumption and improve system performance. In this study, we have modeled a circulation simulator after the circulation systems in deep geothermal facilities to analyze a 2000-meter borehole in Naju-Sanpo-myeon. The simulator is operated by manipulating various putative parameters affecting system performance to analyze the system's coefficient of performance.

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System (지열에너지 시스템을 적용한 발전용 수차의 유동과 전력 특성)

  • Seo, Choong-Kil;Won, Joung-Wun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • Geothermal energy is used in various types, such as power generation, direct use, and geothermal heat pumps. Geothermal energy with high temperature have been used for power generation for more than a century. The purpose of the study is to investigate flow and electricity power characteristics of hydraulic turbine for power generation of geothermal heat pump type with closed-system. The differences between the four types of hydraulic turbine, are different from the blade shape, volume, angle and etc. In case of prototype(1), pressure at blade was reduced to 2.1 bar, the kinetic energy of blade increased by increasing flow velocity(4.1 m/s). The increase of flow velocity at the blade edge markedly appeared, to increase the kinetic energy of the rotating shaft. In case that gateway in hydraulic turbine was installed, operating torque and RPM(1,080) of the rotating shaft increased respectively. Although rotational speed of prototype(2) compared to prototype(1) was reduced, the power generation capacity was greater about 3.4 times to 97 W. The most power of 255W was generated from prototype (4).

A Study on the GSHP System for Domestic application(I) (GSHP 시스템의 국내적용성에 관한 연구(I))

  • 백성권;안형준;박영진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.439-444
    • /
    • 2002
  • Geothermal or ground source heat pumps(GSHPs) are electrically powered systems that take advantage of the earth's relatively constant temperature to provide heating, cooling, and hot water for homes and commercial buildings. The buried pipe, or ground loop, is the most recent technical advance in heat pump technology. The idea to bury pipe in the ground to gather heat energy began in the 1940s. Only recently, however, have new heat pump designs and improved buried pipe materials been combined to make GHP systems the most efficient heating and cooling systems available. The aim of the study is application of the GSHP system in korea. Our environments for economy, politics and society are different from other countries. For a case, the progressive tax rate of home electricity is represented.

  • PDF

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Development of high-performance cement grout for ground heat exchangers (지중열교환기용 고성능 시멘트 그라우트 개발)

  • Lee, Dong-Chul;Yang, Hee-Jung;Jeon, Joong-Kyu;Seo, Shin-Seok;Choi, Yong-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Performance of ground-source heat pumps (GSHPs) is mainly affected by ground heat exchangers which makes up more than 40% of construction cost. Exact construction and grout as backfill are important, because it is difficult to repair after being installed. As grout materials, bentonite grout material and cement material are used In this paper, thermal conductivity according to mix proportion of cement grout has been experimentally studied. Some variables were set to evaluate thermal conductivities according to change in cement content, unit water ratio, mass per volume of fresh mortar, and aggregate types. From the experimental analysis, high performance cement grout has been proposed.