• Title/Summary/Keyword: Geotextile bag

Search Result 10, Processing Time 0.024 seconds

Geotechnical Characteristics of Geotextile bag for Rehabilitation of Railroad Bed (철도노반 보수용 지오텍스타일 백의 재료특성분석)

  • 신은철;이명호;최진영
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.283-288
    • /
    • 2002
  • The heavy downpour caused by unusual weather has destroyed a railroad bed. It caused a large amount of soil loss due to soil erosion. Hence, there is necessary to rehabilitate the destructed railroad bed as quickly as possible. Application of geotextile bag can standardize the rehabilitation process. Geotextile bag method can be more stable, faster, and more economical. In this study, the stress to geotextile bag was estimated to select the appropriate geotextile material. Geotechnical characteristics of geotextile were also determined.

  • PDF

Static Behavior of Reinforced Railway Roadbed by Geotextile Bag (지오텍스타일 백으로 보강된 철도노반의 정적거동 분석)

  • Lee, Dong-Hyun;Shin, Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.180-186
    • /
    • 2006
  • In this study, a large-scale laboratory model test, 2-D and 3-D numerical analyses were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile bag-reinforced railway roadbed and also unreinforced railway roadbed, Computer program named Pentagon which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test, 2-D and 3-D numerical analyses, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextite, and interface friction angle between geotextile bags. In general, the result of 2-D and 3-D numerical analyses shows lower value than that of laboratory test. Also, the result of 3-D numerical analyses shows lower value than that of 2-D numerical analyses because of its stress transfer effect.

Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test (진동대 실험을 이용한 게비온-식생토낭 옹벽 시스템의 동적주동토압 산정)

  • Kim, Da Been;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.15-26
    • /
    • 2019
  • This study was conducted to characterize shearing strength of geotextile bag, connecting materials and gabion. A largescale shaking take tests were conducted to assess kinetic characteristics of gabion-geotextile bag retaining wall. Based on the results of large-scale shaking table test, dynamic characteristics of gabion-geotextile bag retaining wall structure against acceleration, displacement, and earth pressure were also analyzed. The increments of dynamic active earth pressure were determined to be (0.376-0.377)H at 1:0.3 slope and $(0.154-0.44)g_n$ earthquake acceleration, and (0.389-0.393)H at 1:1 slope, suggesting that the increments tend to rise as the slope decreases.

Analysis of Geotextile Bag Reinforcing Effect on Railway Roadbed (지오텍스타일 백을 이용한 철도노반 보강효과 분석)

  • Lee, Dong-Hyun;Shin, Eun-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2005
  • In this study, a large-scale laboratory model test and 2-D numerical analysis were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile-reinforced railway roadbed and also unreinforced railway roadbed. Computer program named Pentagon 2-D which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test and 2-D numerical analysis, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextile, and interface friction angle between geotextile bags. In general, the result of 2-D numerical analysis shows lower value than that of laboratory test.

  • PDF

Analysis of Failure Mode of Geotextile Container for Urgent Rehabilitation of Railroad Bed (철도노반 긴급복구를 위한 토목섬유 컨테이너의 파괴형태 분석)

  • 신은철;이명호;이준철
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.608-613
    • /
    • 2002
  • This study was under taken as an analysis of failure mode in a railroad bed reconstructed with miniaturized Geotextile Container after being destroyed by heavy rain. It assesses the practical use of the bag shaped Geotextile Container method in the rehabilitation of destroyed roadbeds. The failure mode was assessed using the laboratory model tests to determine the following criteria: Strain of Geotextile Container, Vertical & Horizontal displacements of Geotextile Container layer, and the transmitting load effects due to the applied load. The Geotextile Container layer was failed as a Block Failure type, although there was some variation in the results between the saturated and unsaturated conditions. The main failure was caused by the reduction of the interface friction between Geotextile Containers. The result of this mobilizes the significant horizontal displacement and the ultimate failure of the Geotextile Container layer. The strain on the wet Geotextile Container was occurred about two times greater than that of dry condition.

  • PDF

Application and Evaluation of Geotextile Container Method (지오텍스타일 콘테이너 공법의 현장적용 및 평가)

  • 조삼덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.19-31
    • /
    • 2000
  • Geotextile container method is an environment-friendly construction method that is utilized to build up a breakwater and an underwater embankment, etc. using geotextile container, which is producted by filling the geotextile bag with sand or dredged materials. Geotextile containers are divided into geobags, geotubes and geocontainers based on their size and production method. In recent years, the number of application for the geotextile container method is rapidly increasing in the world, and the development of the effective construction method is focused. In this study, the application and the achievement of the geotextile container method will be introduced, and the practical construction examples and the trend of technology development in foreign country will be discussed.

  • PDF

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Application of Geosynthetic-Reinforced Structures for Railway (철도구조물에 적용되고 있는 토목섬유보강구조물의 현황)

  • Shin, Eun-Chul;Lee, Joong-Hwa
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.337-349
    • /
    • 2009
  • In recent years, the cutting and banking areas along the railway in Korea are exposed to the erosion problem during every year. The reinforcement is a composite construction material in which the strength of engineering fill is enhanced by the addition of strong tensile reinforcement in many different types. Various problems of the railway infrastructure have occurred due to the differential settlement, frost heaving, mud pumping, lack of bearing capacity, partially loss of embankment. In advanced countries, railway roadbed reinforcement is applied to solve these problems on railway roadbed. This paper presents the solution of such problems by means of the engineering works incorporated with railway reinforcement infrastructures such as geotextile bag method, existing grouting method, geocell, reinforced earth, soil nailing and so on.

  • PDF

Behavior of Sand Bag for Maintenance Railroad Bed Subjected to Cyclic Loading (반복하중을 받는 철도노반보수용 샌드백의 거동분석)

  • Shin Eun-Chul;Hwang Seon-Keun;Lee Dong-Hyun;Ryu In-Gi
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1033-1040
    • /
    • 2004
  • Utilizing of the geotextile container shows several advantages such as standardized construction, factory manufactured products, the control of quality, workability. and economical point of view. Recently this technique can be applied to rehabilitate the loss of rail roadbed due to the heavy rainfall. In this study, a large-scale laboratory test were conducted with simulation of static performance on the geotextile container reinforced rail roadbed. Based on the laboratory test results, the vertical pressure distribution with respect to the depth, and settlement of rail roadbed were measured and compared test results between geotextile container reinforced case and unrein forced case. Thus, the effectiveness of reinforcement was evaluated in terms of its performance and stability.

  • PDF