• Title/Summary/Keyword: Geostationary Earth Orbit

Search Result 107, Processing Time 0.024 seconds

TIDAL EVOLUTION OF LUNAR ORBIT AND EARTH ROTATION

  • Na, Sung-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • In this study, I calculate the past and future dynamical states of the Earth-Moon system by using modified Lambeck's formulae. I find that the ocean tidal effect must have been smaller in the past compared to its present amount. Even though the Moon is already in the spin-orbit synchronous rotational state, my calculation suggest that it will not be in geostationary rotational state in the next billion years or so. This is due to the associated Earth's obliquity increase and slow retardation of Earth's spin and lunar orbital angular velocities. I also attempt to calculate the precessional period of the Earth in the future. To avoid uncertainties in the time scale, the future state is described by using the Earth-Moon distance ratio as independent parameter. Effects due to solar tidal dissipation are included in all calculations.

Earth Observation Mission Operation of COMS during In-Orbit Test (천리안위성 궤도상 시험의 지구 관측 임무 운영)

  • Cho, Young-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.89-100
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on $128.2^{\circ}$ East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionalities and the performances of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The operation characteristics of meteorological mission and ocean mission are described and the mission planning for the COMS is discussed. The mission operation results during the COMS IOT are analyzed through statistical approach for the study of both the mission operation capability of COMS verified during the IOT and the satellite image reception capacity achieved during the IOT.

A Solar Array Shunt Switching Unit Considering Worst Case Analysis (최악조건을 고려한 태양전지 어레이 션트 전압조절기)

  • Choi Jae-Dong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.403-410
    • /
    • 2005
  • This Paper Presents development of solar may shunt switching unit with a fully regulated Power regulation for Geostationary Earth Orbit(GEO) satellite. This shunt switching unit comprises the solar may shunt modules that regulate the solar array power. These solar array shunt modules connect/disconnect the solar array segments to/from the bus through switching actions. And that is also possible simply extension to an existing design by FPGA control logic changing. In order to verify the proposed design, the control logic and worst case analysis are analyzed and the simulation and experimental results we shown.

INTRODUCTION OF AOCS HARDWARE CONFIGURATION FOR COMS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hoon-Hee;Ju, Gwang-Hyeok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.207-210
    • /
    • 2007
  • A part of the big differences between LEO(Low Earth Orbit) and GEO(Geostationary Earth Orbit) satellite is that transfer orbit is used or not or what tolerance of the position on the mission orbit is permitted. That is to say, the transfer orbit is not used and the constraint of orbit position is not adapted on LEO satellite. Whereas for GEO satellite case, the transfer orbit shall be used due to the very high altitude and the satellite shall be stayed in the station keeping box which is permitted on the mission orbit. These phases are functions for AOCS mission. The aim of this paper is to introduce the AOCS hardware configuration for COMS (Communication, Ocean and Meteorological Satellite). The AOCS hardware of COMS consist of 3 Linear Analogue Sun Sensors (LIASS), 3 Bi-Axis Sun Sensors (BASS), 2 Infra-Red Earth Sensors (IRES), 3 Fiber Optical Gyroscopes (FOG), 5 momentum wheels and 14 thrusters. In this paper, each component is explained how to be used, how to locate and what relation between the AOCS algorithm and these components.

  • PDF

Combined GPS/BeiDou Positioning Performance in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2014
  • The BeiDou is a satellite-based positioning and navigation system, which is under construction by the China Satellite Navigation Office. Until the June of 2014, the constellation of BeiDou navigation satellite system consists of 14 satellites including five geostationary earth orbit (GEO), five inclined geosynchronous earth orbit (IGSO) and four medium earth orbit (MEO). In this paper, we present the positioning results using BeiDou B1 code measurements obtained from three GNSS reference stations (BHAO, SKMA, MKPO). Combined Beidou/GPS positioning results are also compared to BeiDou and GPS only. BeiDou-only positioning errors for the east-west and north-south direction had less than 2 meter with root mean square (RMS) value. However, the positioning error for the up-down direction had larger than 10 meter at a 95% confidence level. Our results also suggest that the position precision is improved by combined BeiDou/GPS compared to BeiDou-only.

기상 탑재체의 Star Sensing 기능을 이용한 정지궤도 위성의 궤도결정 기술 연구

  • Kim, Bang-Yeop;Lee, Ho-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • A conceptual study about the angle information based orbit determination technique for a geostationary satellite was performed. With an assumption that the simultaneous observing of the earth and nearby stars is possible, we confirmed that the view angles between the earth and stars can be use as inputs for orbit determination process. By the MATLAB simulation with least square method, the convergence is confirmed. This conceptual study was performed with the COMS for instance. This technique will be able to use as a back-up of ground station's orbit determination or a part of autonomous satellite operation.

  • PDF

Study on the wheel allocation and the wheel momentum off-loading for COMS having asymmetric solar array configuration (비대칭 태양전지판 형상의 천리안위성 휠배치와 휠모멘텀조정에 관한 연구)

  • Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2013
  • The mission of a lot of satellites on geostationary orbit is the communication and/or the broadcasting. These satellites need a big power, so these have a large solar array. Recently, the new satellite for Earth environment monitoring is developing on geostationary orbit. The payload of Earth monitoring satellite requires better thermal condition on detector. Therefore this satellite uses a boom for the attitude stability instead of rejecting one-side solar array as a heat source. The other hand, it uses some momentum wheels being a more momentum capacity to control the large disturbance by solar pressure due to the asymmetric solar array configuration. In this paper, the analysis on the wheel allocation and the wheel off-loading for COMS is summarized and the results are verified by telemetry of COMS. COMS has no boom and a perfectly asymmetric solar array configuration, and it is operating well on geostationary orbit.

Characteristics of COMS MI Radiometric Calibration

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.71-74
    • /
    • 2006
  • Communication Ocean Meteorological Satellite (COMS) is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological imager (MI) is one of COMS payloads and has 5 spectral channels to monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The MI has on-board radiometric calibration capabilities called 'blackbody calibration' for infrared channels and 'space look' for infrared/visible channels, and radiometric response stability monitoring device called 'albedo monitor' for visible channel. Additionally the MI has on-board function called 'electrical calibration' for the check of imaging path electronics of both infrared and visible channels. The characterization of MI performance is performed to provide the pre-launch radiometric calibration data which will be used for in-orbit radiometric calibration with the on-board calibration outputs. The radiometric calibration of the COMS MI is introduced in the view point of instrument side in terms of in-orbit calibration devices and capabilities as well as the pre-launch calibration activities and expected outputs.

  • PDF

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia (동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향)

  • Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

COMMUNICATIONS SATELLITE SYSTEM BY USING MOON ORBIT SATELLITE CONSTELLATION

  • Lee, Sang-Uk;Kim, Jae-Hoon;Lee, Seong-Pal
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.313-318
    • /
    • 2003
  • A communications satellite system placed in three-Lagrange points, $L_3$, $L_4$ and $L_5$, of the restricted three-body problem in Earth-Moon system is proposed in this paper. LEO satellite constellation has been another choice of communications system. The proposed system which is alternatives of limited geostationary orbit resources, has some weak points such as long distance from the Earth, relatively expensive launch cost, long delay time, more required power, and so on. It has good points like less efforts (fuel) for station keeping, less eclipses, etc. This system has limitations for applications to provide commercial services but it is still some attractive points.