• Title/Summary/Keyword: Geospatial image

Search Result 347, Processing Time 0.035 seconds

Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change (해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구)

  • Cho, Hyung Gab;Kim, Dong Wook;Shin, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2014
  • This paper deals with comparison of classification accuracy between three land cover classification results having difference in resolution and they were classified with eight classes including building, road, forest, etc. Airborne hyperspectral image used in this study was acquired at 1000m, 2000m, 3000m elevation and had 24 bands(0.5m spatial resolution), 48 bands(1.0m), 96 bands(1.5m). Assessment of classification accuracy showed that the classification using 48 bands hyperspectral image had outstanding result as compared with other images. For using hyperspectral image, it was verified that 1m spatial resolution image having 48 bands was appropriate to classify land cover and qualitative improvement is expected in thematic map creation using airborne hyperspectral image.

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

Landslide Susceptibility Analysis in Janghung Using Spatial Relationships between Landslide and Geospatial Information (산사태와 지형공간정보의 연관성 분석을 통한 장흥지역 산사태 취약성 분석)

  • 이사로;지광훈;박노욱;신진수
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • The purpose of this study is to analyze the landslide susceptibility, containing the process, which reveals spatial relationships between landslides and geospatial data sets, which occurred in Janghung area in 1998. Landslide locations were detected from remotely sensed image and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database in GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. To extract the relationship between landslides and geospatial database, likelihood ratio was calculated and compared with the result of Yongin area. Also, the landslide susceptibility index was calculated by summation of the likelihood ratio and the landslide susceptibility map was generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of lilndslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF

Remote Sensing Image Server based on WMS for GMS (Greater Mekong Sub-Region) Countries.

  • Ninsawat, Sarawut;Honda, Kiyoshi;Horanont, Teerayut;Yokoyama, Ryuzo;Ines, Amor V.M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.790-792
    • /
    • 2003
  • The remote sensing image server provides advanced image serving capabilities for geospatial image. Wide seamless image mosaics of Landsat 5 over GMS countries, which exceed a 15 GB or more in size per image, can integrate with other GIS map servers. The approach of two improvement algorithms leads to speed up the response time while preserving the data quality. This system does not only provide images on the web, but also provide GIS layers to WMS client map servers. The advantage of this approach is its efficiency lower cost in terms of cost, time and updating to obtain and utilize remote sensing image.

  • PDF

Geospatial Data Display Technique for Non-Glasses Stereoscopic Monitor (무안경식 입체 모니터를 이용한 지형공간 데이터의 디스플레이 기법)

  • Lee, Seun-Geun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.599-609
    • /
    • 2008
  • Development of computer and electronic technology leads innovative progress in spatial informatics and successful commercialization. Geospatial information technology plays an important role in decision making in various applications. However, information display media are two-dimensional plane that limits visual perception. Understanding human visual processing mechanism to percept stereo vision makes possible to implement three-dimensional stereo image display. This paper proposes on-the-fly stereo image generation methods that are involved with various exterior and camera parameters including exposure station, viewing direction, image size, overlap and focal length. Collinearity equations and parameters related with stereo viewing conditions were solved to generate realisitc stereo imagery. In addition stereo flying simulation scenery was generated with different viewing locations and directions. The stereo viewing is based on the parallax principle of two veiwing locations. This study implemented anaglyphic stereogram, polarization and lenticular stereo display methods. Existing display technology has limitation to provide visual information of three-dimensional and dynamic nature of the real world because the 3D spatial information is projected into 2D plane. Therefore, stereo display methods developed in this study improves geospatial information and applications of GIS by realistic stereo visualization.

Object Classification Using Point Cloud and True Ortho-image by Applying Random Forest and Support Vector Machine Techniques (랜덤포레스트와 서포트벡터머신 기법을 적용한 포인트 클라우드와 실감정사영상을 이용한 객체분류)

  • Seo, Hong Deok;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Due to the development of information and communication technology, the production and processing speed of data is getting faster. To classify objects using machine learning, which is a field of artificial intelligence, data required for training can be easily collected due to the development of internet and geospatial information technology. In the field of geospatial information, machine learning is also being applied to classify or recognize objects using images and point clouds. In this study, the problem of manually constructing training data using existing digital map version 1.0 was improved, and the technique of classifying roads, buildings and vegetation using image and point clouds were proposed. Through experiments, it was possible to classify roads, buildings, and vegetation that could clearly distinguish colors when using true ortho-image with only RGB (Red, Green, Blue) bands. However, if the colors of the objects to be classified are similar, it was possible to identify the limitations of poor classification of the objects. To improve the limitations, random forest and support vector machine techniques were applied after band fusion of true ortho-image and normalized digital surface model, and roads, buildings, and vegetation were classified with more than 85% accuracy.

GeoNet: Web-based Renotely Sensed Image Processing System (GeoNet: 웹 기반 위성영상 처리)

  • Ahn, Chung-Hyun;Kim, Kyung-Ok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.109-116
    • /
    • 2000
  • GeoNet is java-based remotely sensed image processing system. It is based on java Ibject-oriented paradigm and features cross-platform, web-based execution and extensibility to client/server remotely sensed image processing model. Remotely sensed image processing softwares made by java programming language can suggest alternatives to meet readily demand on remotely sensed image processing in proportion to increasement of remotely sensed data.

  • PDF

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF

Application of Smart Geospatial Information for Modeling and Analysis of City River (도시하천 분석과 모델링을 위한 스마트 지형공간정보의 응용)

  • Lee, Hyun Jik;Eom, Jun Sik;Yu, Young Geol;Park, Eun Gwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.135-142
    • /
    • 2013
  • This study aims to seek adequate and optimized method of applying high quality three-dimensional spatial data created via high-resolution digital aerial photograph image and aerial LiDAR data onto three-dimensional planning of environmentally friendly, ecological restoration of rivers in accordance with irrigation and flood control objectives of urban rivers. Through three-dimensional modeling of before and after the restoration, the research also offers basic information regarding restorations of rivers. Also the transition from the conventional two-dimensional planning into three-dimensional planning environment using smart spatial information acquire accuracy of river analysis, analyze possible civil complaints and suggest solutions to potential problems.

A Study on the Accuracy Improvement of Orthophoto using Low-Cost UAV (저가형 무인비행체를 활용한 정사영상 정확도 향상에 관한 연구)

  • Yun, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.209-218
    • /
    • 2020
  • Various studies and business investments have been performed on UAV in the field of spatial information industry, and it is judged that this industry has being evolved into an expansion stage as a legalization progresses. In addition, public institutions such as Korea Land and Geospatial Information Corporation, Korea Expressway Corporation, and Korea Land and Housing Corporation which have relatively much utilized spatial information work have entered into the stage of settling with active introduction for reasons of work efficiency and business management. However, surveying drones are still classified as expensive equipment, which is a burden on general business application and technology popularization. Moreover, the stabilization of reliability of various location information acquired from UAV is a part of ongoing research and supplementation. Therefore, in this study, to use image information acquired from low-cost UAV as reliable spatial information data, the flight altitude was changed and compared with the result of double transverse flight with conventional photographing technique. As a result, there was no change in the result value at low altitude, but the result showed more than 30% accuracy and accuracy improvement for the X, Y value at the altitude of 130m or higher than the conventional method.