• Title/Summary/Keyword: Geometry function

Search Result 652, Processing Time 0.021 seconds

End-mill Modeling and Manufacturing Methodology via Cutting Simulation (Cutting Simulation을 이용한 End-milling Cutter의 모델링 및 제작에 관한 연구)

  • Kim Jae-Hyun;Kim Jong-Han;Ko Tae-Jo;Park Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.151-159
    • /
    • 2006
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data f3r fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data for machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used for virtual cutting test and analysis as well.

Investigation to Teach Graphical Representations and Their Interpretations of Functions to Fifth Graders (함수의 그래프 표현 및 그래프 해석 지도 가능성 탐색 - 초등학교 5학년을 중심으로 -)

  • Lee, Hwa-Young;Ryu, Hyun-Ah;Chang, Kyung-Yoon
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.131-145
    • /
    • 2009
  • This research was designed to investigate the possibility to teach function concept and graph representation of functions in explicit manner toward at elementary level. Eight class-hours instruction was given to four Grade 5(age 11) students, and dynamic geometry software GSP was partially used in the class. Results indicate that the students could conceptualize the function relation, interpret linear function graphs, recognize the meaning of their slopes, and discuss the relationships among linear graphs and real life situation. Results also indicate that GSP helped students to recognize the relation between dots and the linear graph clearly and that GSP-line graph did decisive role for children to understand the meaning of graph representation of function.

  • PDF

Effects of Fuel Composition on Flame Transfer Function in Lean Premixed Combustor (희박 예혼합 연소기에서 연료 조성이 화염전달함수 특성에 미치는 영향)

  • Kim, Jinah;Kim, Jihwan;Lee, Jeongwon;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.135-140
    • /
    • 2015
  • Flame transfer function is used to determine the relationship between flow fluctuations and heat release perturbations in a lean premixed gas turbine combustor. The characteristics of flame transfer function are known to depend greatly on flame geometries in addition to other various flow conditions. However, it is not easy to experimentally measure the flame transfer function under various actual combustor operating conditions in terms of time and cost. The current research tries to model the flame transfer function using CFD(Computational Fluid Dynamics). From the results, it is shown that the calculated steady flame geometry can be exactly captured with consideration of the wall heat transfer and radiations. Also, unsteady analysis results show the close characteristics of the flame transfer function to the measured one in both gain and phase.

Construction of function graphs through turtle motion (거북 행동을 통한 함수 그래프 구성)

  • Cho, Han-Hyuk;Song, Min-Ho
    • Communications of Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2008
  • There are different perspectives on a function graph. For instance, a parabola is defined by movement of a ball in physics and by quadratic function in mathematics. This study deals with the turtle motion, which is local and intrinsic, and the construction of function graphs with mathematical experiments in a microworld. This paper concerns with a function graph which is in the curriculum or in the history of mathematics. In view of pre-calculus, we introduce activities of mathematization about formalizing of length and area of function graphs without knowledge of calculus.

  • PDF

GRADIENT YAMABE SOLITONS WITH CONFORMAL VECTOR FIELD

  • Fasihi-Ramandi, Ghodratallah;Ghahremani-Gol, Hajar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.165-171
    • /
    • 2021
  • The purpose of this paper is to investigate the geometry of complete gradient Yamabe soliton (Mn, g, f, λ) with constant scalar curvature admitting a non-homothetic conformal vector field V leaving the potential vector field invariant. We show that in such manifolds the potential function f is constant and the scalar curvature of g is determined by its soliton scalar. Considering the locally conformally flat case and conformal vector field V, without constant scalar curvature assumption, we show that g has constant curvature and determines the potential function f explicitly.

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.

Torque Characteristics Analysis of Synchronous Reluctance Motor by Winding Function Theory (Winding Function 이론을 이용한 동기형 릴럭턴스 전동기의 토크 특성 해석)

  • Woo, Kyung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, torque characteristics analysis of Synchronous Reluctance Motor with the cylindrical rotor type by winding function theory(WFT) is described. The stator is same as one of the induction motor. From the d-axis, q-axis flux density distribution, to calculate self and mutual inductances needed to calculate the torque of the machine by using winding function theory the new equivalent geometry of rotor was proposed. D-axis, q-axis flux densities, self inductance and torque characteristics were obtained. From the comparison with results of finite element analysis the proposed method was verified.

Geometric interpretation of time-temperature superposition

  • Cho, Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 2009
  • We investigate time-temperature superposition from the viewpoint of geometry. The arc length of viscoelastic plots provides powerful resolution for check of the validity of time-temperature superposition. We also suggest a new algorithm for determination of shift factor which is base on the minimization of the total arc length and does not assume any functional form of viscoelastic function.