
East Asian Math. J.

Vol. 37 (2021), No. 3, pp. 307–317

http://dx.doi.org/10.7858/eamj.2021.021

AN INTRINSIC CRITERION FOR THE TYPE OF

AUTOMORPHISMS OF THE UNIT DISC

Kang-Hyurk Lee

Abstract. In this paper, we deal with a problem to determine the type

of automorphisms of the unit disc in C in terms of intrinsic geometry. We

will characterize the hyperbolicity and parabolicity of automorphism by
the distance function of the Poincaré metric.

1. Introduction

As a fundamental consequence of the unifomization theorem for Riemann
surfaces due to H. Poincaré [9] and P. Koebe [6], a compact Riemann surface S
of genus g ≥ 2 is a quotient space of the unit disc,

∆ = {z ∈ C : |z| < 1} .

This means that there is a discrete subgroup Γ of the automorphism group
Aut(∆) such that the quotient ∆/Γ is biholomorphic to S. Therefore the Lie
group structure of Aut(∆) and its action on ∆ has been studied in wide fields
of Mathematics (see [7]).

In the study of Aut(∆), there is a typical trichotomy for non-trivial elements
of Aut(∆) given by the action on ∆. A non-trivial automorphism f of ∆ is
called

(1) elliptic if f has a fixed point in ∆;
(2) parabolic if f has only one fixed point in the boundary ∂∆;
(3) hyperbolic if f has only two fixed points in the boundary ∂∆.

An elliptic automorphism is conjugate to a Euclidean rotation z 7→ eiθz of C.
A parabolic automorphism acts as an ideal rotation centered at the boundary
fixed point. A hyperbolic automorphism acts as a squeezing mapping attracting
at a boundary fixed point and repelling at another fixed point (see [3]). This
trichotomy is also characterized by the representation of f in PSL(2,R) which
is isomorphic to Aut(∆). An element H of PSL(2,R) is elliptic, parabolic or
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hyperbolic if |Tr H| < 2, = 2 or > 2, with respectively. Then the type of an
automorphism f of the unit disc is the same as that of its representation Hf in
PSL(2,R).

In this paper, we would characterize intrinsically this classification of Aut(∆);
especially not using the boundary extension of the automorphisms on ∆. Let
f be an automorphism of ∆ without fixed point on ∆, so not elliptic. In order
to determine intrinsically whether f is parabolic or hyperbolic, it is natural to
consider the Poincaré metric,

ds2
∆ =

1(
1− |z|2

)2 |dz|
2
,

of the unit disc which is a complete hermitian metric of a negative constant cur-
vature and the unique, holomorphically invariant metric of ∆ (see [4]). The aim
of this research is to distinguish the parabolic and hyperbolic automorphisms
in terms of the Poincaré metric.

In the previous work [8] by the author, we gave an intrinsic characterization
of automorphisms of ∆ in terms of the Poincaré metric and iterating limit of
automorphisms. For the intrinsic argument, we dealt with a simply connected
Riemann surface S admitting a complete hermitian metric g of constant cur-
vature κ ≡ −4. Then (S, g) is holomorphically isometric to the Poincaré disc
model (∆, ds2

∆). For a point p ∈ S, let ϕg,p : S → R be a negatively valued
function defined by

ϕg,p(z) = tanh2(dg(p, z))− 1 (1.1)

for z ∈ S where dg is the distance function with respect to g. Let f ∈ Aut(S)

be without fixed point and denote by f (n) the n-th iteration of f :

f (1) = f , f (n+1) = f (n) ◦ f .

In [8], the author consider the sequence (ϕn) of functions defined by

ϕn(z) =
ϕg,p ◦ f (n)(

ϕg,p ◦ f (n)
)

(p)
. (1.2)

Then it follows

Theorem 1.1 (Lee [8]). For an automorphism f of S without fixed point, the
sequence (ϕn) of functions in (1.2) converges to a positive function ϕ̂ and

ϕ̂ ◦ f
ϕ̂
≡ c

for some positive c. Moreover f is parabolic if and only if c = 1.

The function ϕg,p in (1.2) is purely geometric quantity of S ' ∆; thus this
theorem is an intrinsic characterization of automorphisms of ∆. But by the
limit procedure involved in the theorem, the type cannot be determined in the
finite number of calculations.
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The main result of this research is give another characterization of parabol-
icity and hyperbolicity by finite terms of iterations in (1.2).

Theorem 1.2. Let S be a simply connected Riemann surface admitting a her-
mitian metric g of constant curvature −4. For a point p ∈ S, let ϕg,p : S → R
be a negative function defined as (1.1). Let

cn =

(
ϕg,p ◦ f (n+1)

)
(p)(

ϕg,p ◦ f (n)
)

(p)
=

tanh2
(
dg
(
p, f (n+1)(p)

))
− 1

tanh2
(
dg
(
p, f (n)(p)

))
− 1

.

Then f is parabolic if and only if

8c2 − 5c1c2 = 3 .

As mentioned in Propositions 3.2 and 3.3, f is hyperbolic if and only if
8c2 − 5c1c2 < 3. Note that cn is the value of ϕn in (1.2) evaluated by f(p):

cn = ϕn(f(p)) .

In Section 2, we will introduce a basic expression of parabolic and hyperbolic
automorphisms of ∆. Then we will devote to confirm the main theorem for
S = ∆ and p = 0 in Section 3. A short proof for the theorem will be in
Section 4.

2. Automorphisms of the unit disc

Let f be an automorphism of ∆. Then there are θ ∈ R and α ∈ ∆ such that

f(z) = eiθ
z + α

1 + ᾱz

When we assume that f leaves the boundary point 1 ∈ ∂∆ fixed so f is par-
abolic, hyperbolic or the identity, then the rotational factor eiθ is uniquely
determined by α in the sense of eiθ = (1 + ᾱ)/(1 + α). Therefore f = fα where
fα is defined by

fα(z) =
1 + ᾱ

1 + α

z + α

1 + ᾱz
. (2.1)

In order to find another fixed point of fα, we can write the equation fα(z) = z
by

0 = (z − 1)(ᾱ(1 + α)z + α(1 + ᾱ)) .

Thus another fixed point of fα is only

qα = − ᾱ(1 + α)

α(1 + ᾱ)
(2.2)

which also belongs to ∂∆. Thus fα is parabolic if and only if qα = 1, equiva-
lently,

1− |α|2

|1 + α|2
= 1 .
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2.1. The parabolic case

From Proposition 2.3 in [8], the automorphism fα in (2.1) is parabolic if and
only if there is some nonzero t ∈ R such that

α = pt :=
−it

2 + it
.

In this case, the automorphism fα = fpt can be written by

fpt(z) =
1 + p̄t
1 + pt

z + pt
1 + p̄tz

=
(2 + it)z − it
itz + (2− it)

.

Moreover t is the parameter of the parabolic subgroup

P = {fpt : t ∈ R}

of Aut(∆) leaving 1 fixed in the sense that

fps ◦ fpt = fps+t for any s, t ∈ R.

Therefore

f (n)
pt = fpnt . (2.3)

Remark 2.1. The image of −1 under fpt is

fpt(−1) =
−(2 + it)− it
−it+ (2− it)

= −1 + it

1− it
= −1− t2 − 2it

1 + t2
=
t2 − 1

t2 + 1
+ i

2t

t2 + 1
.

Take any point eiθ = cos θ + i sin θ on ∂∆ \ {1} where 0 < θ < 2π and let
η = θ/2. For t = cot η,

t2 − 1

t2 + 1
=

cot2 η − 1

cot2 η + 1
= cos2 η − sin2 η = cos(2η) = cos θ ,

2t

t2 + 1
=

2 cot2 η

cot2 η + 1
= 2 cos2 η sin2 η = sin(2η) = sin θ .

This implies that fpt(−1) = eiθ. As a conclusion, the parabolic subgroup P
acts on ∂∆ \ {1} transitively.

2.2. The hyperbolic case

Let fα be a hyperbolic automorphism of ∆. The initial fixed point of fα is
1. Suppose that fα also leaves −1 fixed. Then (2.2) can be written by

1 =
ᾱ(1 + α)

α(1 + ᾱ)
,

equivalently, α = ᾱ. Thus α is a nonzero real number with −1 < α < 1.
Therefore there is a unique nonzero t with tanh(t/2) = α, equivalently

α = ht := tanh(t/2) =
et − 1

et + 1
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for some nonzero t ∈ R. Note that for real α and β,

(fα ◦ fβ)(z) =

z+β
1+βz + α

1 + α z+β
1+βz

=
z + β + α+ αβz

1 + βz + αz + αβ

=
(1 + αβ)z + β + α

1 + αβ + (α+ β)z
=

z + α+β
1+αβ

1 + α+β
1+αβ z

= f α+β
1+αβ

.

Applying α = hs and β = ht, then we have

fhs ◦ fht = f hs+ht
1+hsht

= fhs+t

since

hs + ht
1 + hsht

=
tanh(s/2) + tanh(t/2)

1 + tanh(s/2) tanh(t/2)
= tanh

(
s+ t

2

)
= hs+t .

Therefore we have

f
(n)
ht

= fhnt . (2.4)

The hyperbolic groupH = {fht : t ∈ R} is the set of automorphisms of ∆ leaving
1, −1 fixed.

3. Testing the type of automorphisms for the unit disc

In this section, we will prove Theorem 1.2 for S = ∆. In this case, the
hermitian metric g of the theorem is the Poincaré metric ds2

∆. The distance
function of ds2

∆ is given by

dds2∆(z, w) = tanh−1

∣∣∣∣ z − w1− w̄z

∣∣∣∣
for z, w ∈ ∆ (see [5, 2]). For a point q ∈ ∆, the function in (1.1) is of the form

ϕq(z) := ϕds2∆,q(z) = tanh2(dds2∆(q, z))− 1 =

∣∣∣∣ z − q1− q̄z

∣∣∣∣2 − 1 .

Throughout this section, we will mainly consider the case of q = 0. The test
function above in this case is of the form,

ϕ0(z) = tanh2(dds2(0, z))− 1 = |z|2 − 1 . (3.1)

For an automorphism f of ∆, the sequence of functions

ϕ0 ◦ f (n)

(ϕ0 ◦ f (n))(0)

converges some ϕ̂ if f is parabolic or hyperbolic as shown in [8]. In this section,
we will deal with

ϕ0 ◦ f
(ϕ0 ◦ f)(0)

and
ϕ0 ◦ f (2)

(ϕ0 ◦ f (2))(0)
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and their values at f(0). Before looking at this terms, we introduce widely used
formulae in this section: for an automorphism fα in (2.1) it follows that

(ϕ0 ◦ fα)(z) =

∣∣∣∣1 + ᾱ

1 + α

z + α

1 + ᾱz

∣∣∣∣2 − 1 =
(|z|2 − 1)(1− |α|2)

|1 + ᾱz|2
, (3.2)

so

(ϕ0 ◦ fα)(0) = |α|2 − 1 . (3.3)

3.1. Parabolic automorphisms leaving 1 fixed

Let f be a parabolic automorphism of ∆ leaving 1 fixed. Then there is a
unique t ∈ R \ {0} such that f = fpt where

pt =
−it

2 + it

as we saw in Section 2.1.

We can write Equation (3.3) by

(ϕ0 ◦ fpt)(0) = |pt|2 − 1 =

∣∣∣∣ −it2 + it

∣∣∣∣2 − 1 =
t2

4 + t2
− 1 = − 1

4 + t2
.

For a fixed nonzero t, let

cn =

(
ϕ0 ◦ f (n+1)

pt

)
(0)(

ϕ0 ◦ f (n)
pt

)
(0)

=

(
ϕ ◦ fp(n+1)t

)
(0)

(ϕ ◦ fpnt) (0)

=

(
− 1

4 + (n+ 1)2t2

)
/

(
− 1

4 + n2t2

)
=

4 + n2t2

4 + (n+ 1)2t2
.

Since

8c2 − 5c1c2 = 8
4 + 4t2

4 + 9t2
− 5

4 + t2

4 + 4t2
4 + 4t2

4 + 9t2
=

12 + 27t2

4 + 9t2
= 3 ,

we have

Proposition 3.1. Let f be a parabolic automorphism of ∆ leaving 1 fixed. Then
two numbers c1 and c2 defined by

cn =

(
ϕ0 ◦ f (n+1)

)
(0)(

ϕ0 ◦ f (n)
)

(0)
.

satisfies 8c2 − 5c1c2 = 3.
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3.2. Hyperbolic automorphisms leaving 1 and −1 fixed

If f is a hyperbolic automorphism of ∆ with fixed point 1 and −1, then there
is a unique nonzero t such that f = fht where

ht = tanh(t/2) =
et − 1

et + 1

as in Section 2.2. Apply fht to (3.3), we have

(ϕ0 ◦ fht)(0) = h2
t − 1 =

(
et − 1

et + 1

)2

− 1 = − 4et

(et + 1)2
.

As the same way as Section 3.1, we can define a sequence of positive real num-
bers,

cn =

(
ϕ0 ◦ fh(n+1)t

)
(0)

(ϕ0 ◦ fhnt) (0)
=
h2

(n+1)t − 1

h2
nt − 1

=
et(ent + 1)2

(e(n+1)t + 1)2
(3.4)

for a fixed t. Note that c1 and c2 in this case do not satisfy the condition,

8c2 − 5c1c2 = 3 ,

as in Proposition 3.1. From easy calculations as

(3.5) 8c2 − 5c1c2 − 3 = 8
et(e2t + 1)2

(e3t + 1)2
− 5

e2t(et + 1)2

(e3t + 1)2
− 3

=
−3e6t + 8e5t − 5e4t − 5e2t + 8et − 3

(e3t + 1)2

=
−(et − 1)4(3e2t + 4et + 3)

(e3t + 1)2
,

the number 8c2 − 5c1c2 − 3 is always negative for any nonzero t.

Proposition 3.2. Let f be a hyperbolic automorphism of ∆ leaving 1 and −1
fixed. For the numbers

cn =

(
ϕ0 ◦ f (n+1)

)
(0)(

ϕ0 ◦ f (n)
)

(0)
,

it satisfies that 8c2 − 5c1c2 < 3.

3.3. Hyperbolic automorphisms in general

Continuing from the previous subsection, we consider the hyperbolic auto-
morphism fht for some nonzero t. Here we will consider a point q in ∆ and the
sequence of numbers

cqn =

(
ϕq ◦ f (n+1)

ht

)
(q)(

ϕq ◦ f (n)
ht

)
(q)

=

(
ϕq ◦ fh(n+1)t

)
(q)

(ϕq ◦ fhnt) (q)
(3.6)
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where

ϕq(z) = ϕds2∆,q(z) = tanh2(dds2(q, z))− 1 =

∣∣∣∣ z − q1− q̄z

∣∣∣∣2 − 1

= (|z|2 − 1)
1− |q|2

|1− q̄z|2
= ϕ0(z)

1− |q|2

|1− q̄z|2
.

Since

(ϕ0 ◦ fht)(z) =
(|z|2 − 1)(1− h2

t )

|1 + htz|2
,

from Equation (3.2), it follows that

(ϕq ◦ fhnt)(q) =
(|q|2 − 1)(1− h2

nt)

|1 + hntq|2
1− |q|2

|1− q̄fhnt(q)|
2

=
h2
nt − 1

|1 + hntq|2

(
1− |q|2

)2

|1− q̄fhnt(q)|
2 .

So each cqn can be written by

cqn =

(
ϕq ◦ fh(n+1)t

)
(q)

(ϕq ◦ fhnt) (q)
=
h2

(n+1)t − 1

h2
nt − 1

|1 + hntq|2∣∣1 + h(n+1)tq
∣∣2 |1− q̄fhnt(q)|

2∣∣1− q̄fh(n+1)t
(q)
∣∣2

= cn
|1 + hntq|2∣∣1 + h(n+1)tq

∣∣2 |1− q̄fhnt(q)|
2∣∣1− q̄fh(n+1)t

(q)
∣∣2 ,

where cn = (h2
(n+1)t − 1)/(h2

nt − 1) as in (3.4).

We will calculate the value cqn in case of

q =
−is

2− is
(3.7)

for some s ∈ R. Let us consider

1− q̄fhnt(q) = 1− is

2 + is

q + hnt
1 + hntq

=
(2 + is)(1 + hntq)− is(q + hnt)

(2 + is)(1 + hntq)
.

Applying (3.7) to the numerator only, we can get

1− q̄fhnt(q) =
1

(2 + is)(1 + hntq)

4(1− ishnt)
2− is

=
4(1− ishnt)

(4 + s2)(1 + hntq)
.

Therefore, we have

|1− q̄fhnt(q)|
2∣∣1− q̄fh(n+1)t

(q)
∣∣2 =

1 + s2h2
nt

1 + s2h2
(n+1)t

∣∣1 + h(n+1)tq
∣∣2

|1 + hntq|2
.

This simplifies cqn as

cqn = cn
1 + s2h2

nt

1 + s2h2
(n+1)t

. (3.8)
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It remains to check the value 8cq2 − 5cq1c
q
2 − 3. Equation (3.8) gives

8cq2 − 5cq1c
q
2 − 3 = 8

(
c2

1 + s2h2
2t

1 + s2h2
3t

)
− 5

(
c1

1 + s2h2
t

1 + s2h2
2t

)(
c2

1 + s2h2
2t

1 + s2h2
3t

)
− 3

=
8c2 − 5c1c2 − 3 + s2

(
8c2h

2
2t − 5c1c2h

2
t − 3h2

3t

)
1 + s2h2

3t

.

From Equation (3.5) and the calculation as

8c2h
2
2t − 5c1c2h

2
t − 3h2

3t = 8
et(e2t − 1)2

(e3t + 1)2
− 5

e2t(et − 1)2

(e3t + 1)2
− 3

(e3t − 1)2

(e3t + 1)2

=
−3e6t + 8e5t − 5e4t − 5e2t + 8et − 3

(e3t + 1)2
= − (et − 1)4(3e2t + 4et + 3)

(e3t + 1)2
,

we can write the numerator by

8c2 − 5c1c2 − 3 + s2
(
8c2h

2
2t − 5c1c2h

2
t − 3h2

3t

)
= − (et − 1)4(3e2t + 4et + 3)

(e3t + 1)2
− s2 (et − 1)4(3e2t + 4et + 3)

(e3t + 1)2

= − (1 + s2)(et − 1)4(3e2t + 4et + 3)

(e3t + 1)2
.

As a conclusion, the value 8cq2 − 5cq1c
q
2 − 3 is always negative for any nonzero t.

Proposition 3.3. Let f be a hyperbolic automorphism of ∆ leaving 1 fixed and
let

cn =

(
ϕ0 ◦ f (n+1)

)
(0)

(ϕ0 ◦ f (n))(0)
.

Then 8c2 − 5c1c2 < 3.

Proof. Let fα be a hyperbolic automorphism leaving 1 fixed. Another fixed
point qα = −ᾱ(1 + α)/α(1 + ᾱ) as in (2.2) lies on ∂∆ \ {1}. As mentioned in
Remark 2.1, we have a suitable s such that

fps(qα) = −1 .

Then one can easily see that the automorphism fps ◦ fα ◦ f−1
ps leaving 1 and −1

fixed. Therefore there is a nonzero t with

fht = fps ◦ fα ◦ f−1
ps = fps ◦ fα ◦ fp−s ,

as showed in Section 2.2. Let

q = fps(0) =
1 + p̄s
1 + ps

ps =
−is

2− is
.
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which coincides with (3.7). Since any automorphism of ∆ is isometric with
respect to ds2

∆, we can get

dds2∆(0, fα(0)) = dds2∆(fps(0), fps (fα(0)))

= dds2∆

(
fps(fp−s(q)), fps

(
fα(fp−s(q))

))
= dds2∆(q, fht(q))

from fp−s(q) = f−1
ps (q) = 0. Therefore cn is the same as cqn as in (3.6) since

cn =

(
ϕ0 ◦ f (n+1)

α

)
(0)(

ϕ0 ◦ f (n)
α

)
(0)

=

(
ϕq ◦ f (n+1)

ht

)
(q)(

ϕq ◦ f (n)
ht

)
(q)

= cqn .

Proposition 3.2 implies 8c2 − 5c1c2 < 3. �

4. Proof of Theorem 1.2

Let S be a simple connected Riemann surface with a complete hermitian
metric g of constant curvature −4. Then we can take a biholomorphism

F : ∆→ S

from the uniformization theorem for Riemann surfaces. The Schwarz lemma
for negatively curved Riemann surfaces due to L. V. Ahlfors [1] (see also [2])
implies that F is also an isometry from (∆, ds2

∆) to (S, g).

Let f be an automorphism of S without fixed point and let p ∈ S. Then the
automorphism

F ∗f = F−1 ◦ f ◦ F
of ∆ has at least one fixed point at ∂∆. Since ∆ is homogeneous and rotationally
symmetric, we may assume that

F (0) = p

and the extension of F ∗f to ∆ leaves the point 1 fixed, that is, (F ∗f)(1) = 1.
That means that

F ∗f = fα

for some α ∈ ∆ as in (2.1).
Since F : (∆, ds2

∆)→ (S, g) is isometric, it follows that

dg(p, F (z)) = dg(F (0), F (z)) = dds2∆(0, z) = tanh−1 |z|
for any z ∈ ∆. This implies

F ∗ϕg,p = ϕg,p ◦ F = ϕ0

where ϕ0(z) = |z|2 − 1 is the test function in (3.1). Since

F ∗f (n) = F−1 ◦ f (n) ◦ F = (F−1 ◦ f ◦ F ) ◦ · · · ◦ (F−1 ◦ f ◦ F )︸ ︷︷ ︸
n

= (F ∗f)(n) = f (n)
α
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and ϕg,p = ϕ0 ◦ F−1, we have that

cn =

(
ϕg,p ◦ f (n+1)

)
(p)(

ϕg,p ◦ f (n)
)

(p)
=

(
ϕ0 ◦ F−1 ◦ f (n+1)

)
(F (0))(

ϕ0 ◦ F−1 ◦ f (n)
)

(F (0))

=

(
ϕ0 ◦ F−1 ◦ f (n+1) ◦ F

)
(0)(

ϕ0 ◦ F−1 ◦ f (n) ◦ F
)

(0)
=

(
ϕ0 ◦ f (n+1)

α

)
(0)(

ϕ0 ◦ f (n)
α

)
(0)

coinsides with cn in Propositions 3.1, 3.2, 3.3. Therefore fα is parabolic if and
only if 8c2 − 5c1c2 = 3. This completes the proof. �

References

[1] L. V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc., 43 (1938),

pp. 359–364.

[2] K.-T. Kim and H. Lee, Schwarz’s lemma from a differential geometric viewpoint, vol. 2
of IISc Lecture Notes Series, IISc Press, Bangalore; World Scientific Publishing Co. Pte.

Ltd., Hackensack, NJ, 2011.
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