• 제목/요약/키워드: Geometry Teaching

검색결과 180건 처리시간 0.02초

유클리드 기하에서 테크놀로지 활용을 바탕으로 설명적 증명의 의미와 그에 따른 학습자료 계발

  • 고상숙
    • 한국수학사학회지
    • /
    • 제15권1호
    • /
    • pp.115-134
    • /
    • 2002
  • The increasing use of computers in mathematics and in mathematics education is strongly reflected in the teaching on Euclid geometry, in particular in the use of dynamic graphics software. This development has raised questions about the role of analytic proof in school geometry. One can sometimes find a proof which is rather more explanatory than the one commonly used. Because we, math educators are concerned with tile explanatory power of the proofs, as opposed to mere verification, we should devise ways to use dynamic software in the use of explanatory proofs.

  • PDF

공간감각의 개념 분석 및 교수-학습 방안 탐색 (A Conceptual Analysis of Spatial Sense and Exploring an Effective Way of Teaching-Leaning of Spatial Sense)

  • 한기완
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제5권1호
    • /
    • pp.57-69
    • /
    • 2001
  • A new initiative in the 7th curriculum of mathematics is the inclusion of spatial sense in geometry. The purpose of this study is threefold: a) to identify the concepts of spatial sense; b) to systematize the contents of spatial sense by analysis the curricular and texbooks; and c) to explore an effective way of teaching-leaning of spatial sense.

  • PDF

기하프로그램을 활용한 정다각형 외연의 확장에 대한 연구 (The Study on Extension of Regular Polygon Using Cabri Geometry II)

  • 서보억
    • 한국학교수학회논문집
    • /
    • 제15권1호
    • /
    • pp.183-197
    • /
    • 2012
  • 평면기하는 가장 오래 된 학교수학 학습내용 중 하나이며, 중등학교에서 학생들의 사고력 및 창의력 신장에 중요한 역할을 한다. 평면기하 학습내용 중 정다각형은 초등학교, 중학교에서 볼록 정다각형을 중심으로 다루어지고 있는데, 본 연구에서는 학교에서 다루어지는 정다각형에 대한 학습내용을 기초지식으로 설정하고, 이를 기초로 정다각형 외연의 확장 과정을 체계적으로 탐색하였다. 특히 기하프로그램을 활용한 귀납적 탐구과정이 기하학습 내용 확장에 유의미한 방향을 제시해 줄 수 있다는 구체적 사례를 제시하였다. 본 연구결과를 통해, 정다각형에 대한 심화학습 자료 개발 및 기하 연구를 위한 바람직한 탐구 방향 제시가 기대되어진다.

  • PDF

중.고등학교 수학의 시각화 (A Study on the Visualization of Middle & High School Mathematics)

  • 문광호;우정호
    • 대한수학교육학회지:학교수학
    • /
    • 제1권1호
    • /
    • pp.135-156
    • /
    • 1999
  • The purpose of this study is to discuss about the role of the visualization as an effective method of teaching abstracted mathematics, to analyze visual materials in middle and high school mathematics and to suggest various visualized materials for teaching mathematics effectively. Though formal, symbolic and analytical teaching method is a major characteristic of mathematics, the students should be taught to understand through intuition and insight, and formalize the mathematical concepts progressively. Especially the sight is one of the most important basics of cognition for intuition and insight. Therefore, suggesting mathematical contents through the visual method makes the students understand and formalize the mathematical concepts more easily. In this study, we tried to investigate the meaning and role of visualization in mathematics teaching. And, we discussed about the four roles of visualization in the process of mathematics teaching and learning confirmation and memorization of the mathematical truth, proving theorem and solving problems which is one of the most important purposes of teaching mathematics, According to the roles of visualization, we analyzed visual materials currently taught in middle and high school, and suggested various visual materials useful in teaching mathematics. The investigated fields are algebra where visual materials are little used, and geometry where they are use the most. The paper-made-textbook can't show moving animation vigorously. Hence we suggested visual materials made by GSP and applets in IES .

  • PDF

초등교사 양성 대학의 초등수학교육에 대한 교수-학습 프로그램 개발 (Development of Elementary Mathematics Teaching-Learning Programs for pre-Service Elementary Teacher)

  • 신준식
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권4호
    • /
    • pp.453-463
    • /
    • 2003
  • The main purpose of this paper is to develope elementary mathematics teaching-learning programs for pre-service elementary teachers. The elementary mathematics education program developed in this work is divided into two parts: One is the theory, the other is the practice. The theory deals with the foundations of mathematics, the objectives of mathematics education, the history of mathematics education in Korea, the psychology of mathematics learning, the theories of mathematics teaching and learning, and the methods of assessment. With respect to the practice, this study examines the background knowledge and activities of numbers and their operation, geometry, measurement, statistics and probability, pattern and function.

  • PDF

유클리드의 자료론(The Data)에 기초한 중학교 기하영역의 '자료(datum)' 분석 연구 (The Analysis study of 'datum' 'in Middle School Geometry on the Basis of 'The Data' of Euclid)

  • 서보억
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권3호
    • /
    • pp.691-708
    • /
    • 2010
  • 본 연구는 유클리드의 자료론(The Data)에 제시된 명제 94개의 가장 핵심적인 구성 원리에 기초하여 중학교 기하영역에서 '자료론'의 '자료(datum)'에 부합된 문제를 중학교 교과서를 중심으로 분석하고 이를 기초로 하여 자료(datum) 개발을 목적으로 한다. 이러한 연구 목적을 위해 다음과 같은 연구를 진행한다. 첫째, 자료론의 명제들은 '자료(datum)'라고 불리는 독특한 구조를 형성하고 있다. 이러한 구조에 대해 구체적으로 고찰한다. 둘째, 현재 중학교 교과서에서 다루어지는 기하 내용영역에서 자료로 분류할 수 있는 학습 자료를 분석하고 탐색한다. 셋째, 중학교 기하교육에 적용 가능한 전형적인 자료(datum)의 형태를 가지는 자료 개발하고 탐구한다. 이러한 연구 결과를 통해 학교현장에서 수학교육이 더 풍성해 질 것과 수학교육과정의 개정 및 교수-학습 개선에 의미 있는 시사점을 제공하리라 기대된다.

학생들의 정당화 유형과 탐구형 소프트웨어의 활용에 관한 연구 (A study of the types of students' justification and the use of dynamic software)

  • 류희찬;조완영
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제9권1호
    • /
    • pp.245-261
    • /
    • 1999
  • Proof is an essential characteristic of mathematics and as such should be a key component in mathematics education. But, teaching proof in school mathematics have been unsuccessful for many students. The traditional approach to proofs stresses formal logic and rigorous proof. Thus, most students have difficulties of the concept of proof and students' experiences with proof do not seem meaningful to them. However, different views of proof were asserted in the reassessment of the foundations of mathematics and the nature of mathematical truth. These different views of justification need to be reflected in demonstrative geometry classes. The purpose of this study is to characterize the types of students' justification in demonstrative geometry classes taught using dynamic software. The types of justification can be organized into three categories : empirical justification, deductive justification, and authoritarian justification. Empirical justification are based on evidence from examples, whereas deductive justification are based logical reasoning. If we assume that a strong understanding of demonstrative geometry is shown when empirical justification and deductive justification coexist and benefit from each other, then students' justification should not only some empirical basis but also use chains of deductive reasoning. Thus, interaction between empirical and deductive justification is important. Dynamic geometry software can be used to design the approach to justification that can be successful in moving students toward meaningful justification of ideas. Interactive geometry software can connect visual and empirical justification to higher levels of geometric justification with logical arguments in formal proof.

  • PDF

기하 증명 읽기 이해 모델의 적용 효과

  • 황철주;이지연;김선희
    • East Asian mathematical journal
    • /
    • 제25권3호
    • /
    • pp.299-320
    • /
    • 2009
  • In mathematics, the education of the geometry proof has been playing an important role in promoting the ability for logical thinking by means of developing the deductive reasoning. However, despite of those importance mentioned above, considering the present condition for the education of the geometry proof in middle schools, it is still found that most of classes are led mainly by teachers, operating the cramming system of eduction, and students in those classes have many difficulties in learning the geometry proof course. Accordingly this thesis suggests the other method that is distinguished from previous proof educations. The thesis of Kai-Lin Yang and Fou-Lai Lin on 'A Model of Reading Comprehension of Geometry Proof (RCGP)', which was published in 2007, have various practical examples based on the model. After composing classes based on those examples and instructing the geometry proof, found out a problem. And then advance a new teaching model that amendment and supplementation However, it is considered to have limitation because subjects were minority and classes were operated by man-to-man method. Hopefully, the method of proof education will be more developed through performing more active researches on this in the nearest future.

역동기하 환경에서 "끌기(dragging)"의 역할에 대한 고찰 (Review of the Role of Dragging in Dynamic Geometry Environments)

  • 조정수;이은숙
    • 대한수학교육학회지:학교수학
    • /
    • 제15권2호
    • /
    • pp.481-501
    • /
    • 2013
  • 본 연구는 역동기하 환경에서 "끌기"의 역할을 고찰하고자 한다. 끌기는 도형을 역동적으로 변화시키면서 기하 도형의 숨겨진 성질과 이들 사이의 관계를 나타내는 불변성을 탐색 가능하게 하는 중요한 역할을 한다. 따라서 본 연구는 선행 연구의 분석을 통해 역동기하 환경에서 끌기의 사용이 세 가지 관점으로, 즉 역동적 표상, 도구유발행위, 그리고 어포던스로 구분될 수 있다는 결론을 도출하였다. 본 연구에서는 끌기의 사용에 대한 이들 각각의 관점을 선행 연구를 중심으로 살펴보았다. 그리고 이로부터 (1) 연역적, 공리적, 형식적 지필기하를 실험수학으로 접근할 수 있게 하는 끌기의 가능성 탐구, (2) 추측과 증명 사이에서 끌기의 유형에 따른 작용 분석, (3) 학생과 DGS 사이의 도구발생 과정에 따른 기하 학습의 차이 분석, (4) 끌기에 의한 의사소통이나 담화 유형의 분석, (5) 어포던스로서 끌기에 의해 수반되는 측정 기능의 역할 분석, 그리고 (6) 끌기에 의한 기하 개념의 정의에 대한 학생들의 인식론적 변화를 기하의 교수-학습과 후속연구를 위한 제언으로 제시하고 있다.

  • PDF

보조선 지도법 연구 (A Study on Teaching How to Draw Auxiliary Lines in Geometry Proof)

  • 임재훈;박경미
    • 대한수학교육학회지:학교수학
    • /
    • 제4권1호
    • /
    • pp.1-13
    • /
    • 2002
  • The purpose of this study is to investigate the reasons and backgrounds of drawing auxiliary lines in the proof of geometry. In most of proofs in geometry, drawing auxiliary lines provide important clues, thus they play a key role in deductive proof. However, many student tend to have difficulties of drawing auxiliary lines because there seems to be no general rule to produce auxiliary lines. To alleviate such difficulties, informal activities need to be encouraged prior to draw auxiliary lines in rigorous deductive proof. Informal activities are considered to be contrasting to deductive proof, but at the same time they are connected to deductive proof because each in formal activity can be mathematically represented. For example, the informal activities such as fliping and superimposing can be mathematically translated into bisecting line and congruence. To elaborate this idea, some examples from the middle school mathematics were chosen to corroborate the relation between informal activities and deductive proof. This attempt could be a stepping stone to the discussion of how to teach auxiliary lines and deductive reasoning.

  • PDF