• Title/Summary/Keyword: Geometry Pipeline

Search Result 47, Processing Time 0.029 seconds

Development of a Geometry PIG for the Inspection of Natural Gas Pipeline and It´s application

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Dae-Jin;Koo, Sung-Ja;Yoo, Hui-Ryong;Park, Yong-Woo;Kho, Young-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.150.4-150
    • /
    • 2001
  • The geometry PIG provides pipeline operators with continuous measurement of pipe centerline coordinates, bend radius, displacement, and bending strain in a single pass through the pipeline. This study introduces the developed geometry PIG(Pipeline Inspection Gauge) which is used for geometry surveys. This tool is equipped with the several sensor systems. The Inertial Navigation System (INS) comprises angle rate gyros and linear accelerometers. The system measures the precise path of the PIG during its traverse of the pipeline. This system is also used to produce a detailed map of the lire, measure curvature. Odometers measure the PIG´s distance moved along the line and instantaneous speed during the PIG run. Caliper sensors measure pipeline ...

  • PDF

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

Development of Assessment System for Pipeline Integrity (매설배관의 건전성 평가 시스템 개발)

  • 이억섭;윤해룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.158-165
    • /
    • 2003
  • The object of this work is to develop an assessment system for pipeline integrity. The internal algorithm and the database of the system are described in this paper. The system consists of four module applications; the effect of corrosion in pipeline, crack, SCC (stress corrosion cracking) and fatigue module. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary condition and general properties. This system may give a guideline for maintenance and modifications.

Effect of External Corrosion in Pipeline on Failure Prediction

  • Lee, Ouk-Sub;Kim, Ho-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.48-54
    • /
    • 2000
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using a numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method)with an elastic-plstic and large-deformation analysis. Corrosion pits and narrow corrosion grooves in pressurized pipeline were analysed. A failure criterion, based on the local stress state at the corrosion and a plastic collapse failure mechanism, is proposed. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis compared with those by methods specified in ANSI/ASME B31G code and a modified B31G code. It is concluded the corrosion geometry significantly affects the failure behavior of corroded pipeline and categorisation of pipeline corrosion should be considered in the development of new guidance for integrity assessment.

  • PDF

Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브의 수치해석 모델 평가)

  • KIM, CHUL-KYU;LEE, KYOUNG-KEUN;LIM, TAE-GYUN;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.

Development of Integrity Assessment System for the Pipeline (파이프라인의 건전성 평가 시스템 개발)

  • Lee, Eok-Seop;Hwang, In-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.157-162
    • /
    • 2000
  • The object of this work is to develop an assessment system for pipeline integrity. the system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

The intergrity assessment of buried pipeline (매설배관의 건전성 평가)

  • Lee, Ouk-Sub;Yin, Hai-Long
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.333-338
    • /
    • 2001
  • The object of this work is to develop an assessment system for pipeline integrity. The system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules and the effect of cavity. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

The integrity assessment of the pipeline (파이프라인의 건전성 평가)

  • 이억섭;황인현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.25-30
    • /
    • 2000
  • The object of this work is to develop an assessment system for pipeline integrity The system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper, The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general Properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

A Design of Vector Processing Based 3D Graphics Geometry Processor (벡터 프로세싱 기반의 3차원 그래픽 지오메트리 프로세서 설계)

  • Lee, Jung-Woo;Kim, Ki-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.989-990
    • /
    • 2006
  • This paper presents a design of 3D Graphics Geometry processor. A geometry processor needs to cope with a large amount of computation and consists of transformation processor and lighting processor. To deal with the huge computation, a vector processing structure based on pipeline chaining is proposed. The proposed geometry processor performs 4.3M vertices/sec at 100MHz using 11 floating-point units.

  • PDF

Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Yong-Woo;Yoo, Hui-Ryong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1349-1357
    • /
    • 2003
  • This paper deals with verification of the theoretical model for dynamic behavior of Pipeline Inspection Gauge (PIG) traveling through high pressure natural gas pipeline. The dynamic behavior of the PIG depends on the differential pressure across its body. This differential pressure is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze the dynamic behavior characteristics such as gas flow in pipeline, and the PIG position and velocity, not only the mathematical models are derived, but also the theoretical models must be certified by actual pigging experiment. But there is not any found results of research on the experimental certification for dynamic behavior of the PIG. The reason is why the fabrication of the PIG as well as, a field application are very difficult. In this research, the effectiveness of the introduced solution using the method of characteristics (MOC) was certified through field application. In-line inspection tool, 30" geometry PIG, was fabricated and actual pigging was carried out at the pipeline segment in Korea Gas Corporation (KOGAS) high pressure system, Incheon LT (LNG Terminal) -Namdong GS (Governor Station) line. Pigging is fulfilled successfully. Comparison of simulation results with experimental results show that the derived mathematical models and the proposed computational schemes are effective for predicting the position and velocity of the PIG with a given operational conditions of pipeline.