• Title/Summary/Keyword: Geometry Mapping

Search Result 137, Processing Time 0.023 seconds

Mipmap-Based Deferred Soft Shadow Mapping (밉맵 기반의 지연된 부드러운 그림자 매핑)

  • Kim, Sunggoo;Lee, Sungkil
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.399-403
    • /
    • 2016
  • Deferred Shading is a shading technique that postprocesses pixels in the screen space, following geometry-only rendering passes with depth buffering. Unlike typical shadow mapping techniques, this technique allows us to render shadows from multiple light sources without changing the structure of the rendering pipelines. This paper presents a deferred shadow mapping technique and its extension to soft shadows using mipmapping. Our technique first generates visibility maps from light sources, and blurs the visibility maps for deferred shading. This strategy leads to efficient soft-edged shadows, but does not incorporate depth variation, producing light bleeding to some extent. In order to suppress the light-bleeding artifacts, we also propose a depth-adaptive mipmap sampling technique in the screen space.

AP224 based Feature Translation from 3D CAD through STEP Part111 (3차원 CAD에서 STEP Part111을 통한 AP224 특징형상 데이터 번역)

  • Kim, J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.4
    • /
    • pp.303-314
    • /
    • 2006
  • The exchange of CAD (Computer Aided Design) models between different CAD systems and to downstream applications such as manufacturing has become very important to modem industry. One serious current issue is that the process cannot automatically import existing 3-D solid models in a variety of commercial CAD formats into the process without manually re-mastering the model in current standard including "SIEP AP(Application Protocol) 203 Edition 1" To fully integrate technical data from the design agency to the shop floor, design intent and validated 3D geometry of feature based parametric CAD model should be brought into the standardized processes. To overcome this limitation, AP203 Edition 2 (Ed.2) and its related STEP parts such as Part55, Part108, Part109, Part111 and Part112 are starting to be available to handle this problem. The features in Part111 are harmonized with the machining features available in AP224. This paper is focused on two mapping technologies: CAD to Part111 mapping and Pat111 to AP224 mapping including case studios and it will provide the guideline about what should be done next in the AP203 Ed.2 to AP224 mapping. The final goal of this project is to integrate technical data from CAD to AP224 based manufacturing information through AP203 Ed.2.

Development of fracture face mapping algorithm and its applications to the design of various engineering and environmental works. (토목설계 및 시공분야 지반조사를 위한 절리 단면 영상법 개발 및 그의 응용사례)

  • 김중열;김유성;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.119-126
    • /
    • 2002
  • Fractures, especially faults have most significant influence on the difficulties encountered in various engineering and mining works, because they can give rise to inevitable reductions in shear strength as well as large increase in permeability. Thus, before underground access is possible, it is desirable to estimate the distribution and geometry of fractures in advance, if reliable structural data from e.g. Televiewer tool are available. To this end, fracture face mapping is just the evaluation method used to form a fracture image determined by intersecting of each fracture plane with a selected plane section of a rock mass, assuming that all fractures be planar with fixed-aperture. Although many fractures are geometrically complex and others are altered chemically, according to the abundant experiments in recent years, it would seem that the technique could be applied to benefit the design of numerous engineering works such as slope stability, tunnel excavations, dam foundation and diverse environmental works. This paper presents at first an evaluation algorithm for fracture face mapping and then concludes with various representative examples of applications.

  • PDF

Analysis on Mapping Accuracy of a Drone Composite Sensor: Focusing on Pre-calibration According to the Circumstances of Data Acquisition Area (드론 탑재 복합센서의 매핑 정확도 분석: 데이터 취득 환경에 따른 사전 캘리브레이션 여부를 중심으로)

  • Jeon, Ilseo;Ham, Sangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.577-589
    • /
    • 2021
  • Drone mapping systems can be applied to many fields such as disaster damage investigation, environmental monitoring, and construction process monitoring. To integrate individual sensors attached to a drone, it was essential to undergo complicated procedures including time synchronization. Recently, a variety of composite sensors are released which consist of visual sensors and GPS/INS. Composite sensors integrate multi-sensory data internally, and they provide geotagged image files to users. Therefore, to use composite sensors in drone mapping systems, mapping accuracies from composite sensors should be examined. In this study, we analyzed the mapping accuracies of a composite sensor, focusing on the data acquisition area and pre-calibration effect. In the first experiment, we analyzed how mapping accuracy varies with the number of ground control points. When 2 GCPs were used for mapping, the total RMSE has been reduced by 40 cm from more than 1 m to about 60 cm. In the second experiment, we assessed mapping accuracies based on whether pre-calibration is conducted or not. Using a few ground control points showed the pre-calibration does not affect mapping accuracies. The formation of weak geometry of the image sequences has resulted that pre-calibration can be essential to decrease possible mapping errors. In the absence of ground control points, pre-calibration also can improve mapping errors. Based on this study, we expect future drone mapping systems using composite sensors will contribute to streamlining a survey and calibration process depending on the data acquisition circumstances.

A Study on Prediction of Optimized Penetration Using the Neural Network and Empirical models (신경회로망과 수학적 방정식을 이용한 최적의 용입깊이 예측에 관한 연구)

  • 전광석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.70-75
    • /
    • 1999
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor the information about weld characteristics and process paramters as well as modification of those parameters to hold weld quality within the acceptable limits. Typical characteristics are the bead geometry composition micrrostructure appearance and process parameters which govern the quality of the final weld. The main objectives of this paper are to realize the mapping characteristicso f penetration through the learning. After learning the neural network can predict the pene-traition desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) were chosen from an error analysis. partial-penetration single-pass bead-on-plate welds were fabricated in 12mm mild steel plates in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the penetration with reasonable accuracy and gurarantee the uniform weld quality.

  • PDF

A Study on Development of System for Prediction of the Optimal Bead Width on Robotic GMA Welding (로봇 GMA용접에 최적의 비드폭 예측 시스템 개발에 관한 연구)

  • 김일수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-63
    • /
    • 1998
  • An adaptive control in the robotic GMA welding is employed to monitor information about weld characteristics and process parameters as well as to modify those parameters to hold weld quality within acceptable limits. Typical characteristics are the bead geometry, composition, microstructure, appearance, and process parameters which govern the quality of the final weld. The main objectives of this thesis are to realize the mapping characteristics of bead width through learning. After learning, the neural estimation can estimate the bead width desired form the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead width with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

An Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding Including the Effect of Molten Metal (용착 금속을 고려한 필릿 용접에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.116-124
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding including the effect of molten metal. The solution is obtained by solving a transient three-dimensional heat conduction equation with convection boundary conditions on the surfaces of a plate, and mapping the infinite plate onto the fillet weld geometry with energy equation. The electric heat input on the fillet weld and on the infinite plate is assumed to have a combination of two bivariate Gaussian distribution. To check the validity of the solution. FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross-sections at various distances from the arc start point are compared with those of simulation result.

  • PDF

A Simplified Three-Dimensional Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 근사 3차원 유한 요소 해석)

  • Shin, H.W.;Kim, D.W.;Kim, N.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.52-65
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition is combined with the slab method. To define the die geometry for a non-axisymmetric extrusion. area mapping technique was used. Streamlined die surface was used to minimize the total extrusion pressure. Extrusion of square, hexagonal and 'T' section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

Generation of 3D Terrain Mesh Using Noise Function and Height Map (노이즈 함수 및 높이맵을 이용한 3차원 지형 메쉬의 생성)

  • Sangkun, Park
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • This paper describes an algorithm for generating a terrain using a noise function and a height map as one of the procedural terrain generation methods. The polygon mesh data structure to represent the generated terrain concisely and render it is also described. The Perlin noise function is used as the noise technique for terrain mesh, and the height data of the terrain is generated by combining the four noise waves. In addition, the terrain height information can be also obtained from actual image data taken from the satellite. The algorithm presented in this paper generates the geometry part of the polygon topography from the height data obtained, and generated a material for texture mapping with two textures, that is, a diffuse texture and a normal texture. The validity of the terrain method proposed in this paper is verified through application examples, and its possibility can be confirmed through performance verification.

A Numerical Analysis of the Thermal Hydraulic Characteristics in a Channel of 37 Rods (전산해석을 통한 37개봉으로 구성된 유로에서의 열유체학적 특성분석)

  • 전태현;심윤섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.50-55
    • /
    • 1986
  • Characteristics of the flow and heat transfer in a channel of 37 rods are investigated numerically. The flow is taken to be a fully developed incompressible laminar flow and it has an uniform temperature profile at the inlet and flows down through the channel of constant wall temperature. A boundary-fitted coordinate system is used for the complex geometry. Calculation is initiated by calculating the developed flow profile and then proceeds to temperature development. Through the calculation the details of the flow and temperature distribution characteristics are found, and discussion is made on the mechanism of the transport phenomena in the complex geometry in terms of wall shear stress distribution, non-dimensionalized velocity, friction factor, Nusselt number distribution, Reynolds number, and porosity. Also the effects of the eccentricity in rod configuration are analyzed and its importance is emphasized.