• Title/Summary/Keyword: Geometrical Design

Search Result 916, Processing Time 0.029 seconds

Building Geometrical Concepts by Using both Examples and Nonexamples (범례 제시를 통한 도형 개념 지도 방안)

  • Kim, Soo-Mi;Jung, Eun-Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.4
    • /
    • pp.401-417
    • /
    • 2005
  • Skemp supposed that it is effective to use both examples and non-examples when new concepts which are upper level than learner's schema are introduced. The purpose of this research is to develop a practical process of teaching geometrical concepts based on Skemp's assumption. For this, the related literatures are reviewed and the Korean textbooks(4-ga, 4-na) are analyzed with respect to method of concept formation. The analysis to]Is that the textbook just explains Properties of concepts or present definitions, instead of giving the chance of inquiry. So we design and apply six step process of teaching geometrical concepts to 4th graders focused on students' inquiry using both examples and non-examples.'rho result turns out that using examples and non-examples is highly positive to concept formation.

  • PDF

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.

A Study on Evaluation of Consistency Using 3-Dimensional Sight Distance (3차원시거를 이용한 도로일관성 평가에 관한 연구)

  • Park, Je-Jin;Oh, Young-Wook;Kang, Jeong-Gyu;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.187-197
    • /
    • 2008
  • While driving a highway, A driver gets lots of information through geometrical structure, traffic situation, signs on the road. He gets most of the information by visual sense. Acceleration or deceleration and driving direction depend on sight distance. Therefore, it's essential to secure a driver's sight distance for a safe drive. However, design guides of geometrical structure and sight distance suggest respective standards of horizontal and vertical alignment. They do not indicate quantitative standard of combined alignment. Currently, element separated on a two-dimensional projected plane are available, but they do not guarantee safe and pleasant design. I will use the existent model analysing three-dimensional sight distance through mathematical calculation and sort a variety of geometrical structure element and type. In these researches, we will look at how much three-dimensional sight distance is overestimated or underestimated compared to two-dimensional. I will develop a program which predicts traffic velocity on the curvature of two-lane provincial road. stopped sight distance and three-dimensional sight distance will be compared at a predicted drive velocity. I will suggest the way to evaluate road consistency.

DEFORMED BUILDING DESIGN AND FABRICATION BASED ON THE PARAMETRIC TECHNOLOGY

  • Eonyong Kim;Jongjin Park;Hanjong Jun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1107-1112
    • /
    • 2009
  • To design and build a deformed building, new approaches and technologies are required, in which a design approach with parametric and generative technology is used for design and for building it, computer based fabrication technology. Even if parametric design technology is not a state of the art thing, the technology is still used widely, in order to effect the efficiency and furthermore it will continue to be innovated upon continuously. To cope with the limitation of it, the generative design system is developed. Deformed building design requires new methodology to overcome the limitations of conventional ways, which have difficulties to create enough design alternatives to explore satisfied design solutions order to deformed design have geometrical complexity and dramatically increased amount of data. Hence the generative design system can be a cutting edge methodology to solve it. However we should consider how to build the design in the real world. For this, the computer based fabrication technology which is used in mechanical industry is required to introduce to architecture and construction domain for efficiency. In this research, the methodology is modeled and tested with Bezier surface based shell structure.

  • PDF

Study on Process Development of Furniture Design Class by Fusing 3D Form Study (입체조형 실습을 연계한 가구디자인 수업 개발을 위한 사례연구)

  • In, Chi Ho
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.165-172
    • /
    • 2014
  • 3D form study is one of basic subjects in industrial design education. There are an array of textbooks of visual art, design and architecture, most of which address basic geometrical form study and abstract forms. With the introduction of computerization, current trends are directed to reduce basic form education and students' participation in classes and their accomplishments. This study was intended to develop works under a theme of furniture design with concrete shapes and functions. This study focused on developing relevant process by fusing 3D form study and furniture design which fall into basic design and design studio subjects, respectively. Among 3D form studies, applied were a concept of 3D configuration that explores the relations between surface forms and 3D forms. Furniture design is a challenge to students at beginner or intermediate level in basic design education from initial devising stage to production in kind. To ease high level of difficulties at designing and producing stages, technical education was systematized in the process of conceptualizing, developing idea and production. This type of challenge was carried out during separate semesters, along with a case study done to develop different types of challenges. This study helped students to be motivated and actively participate in classes and well perform advanced form study and technical training from design to actual production.

  • PDF

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

A Study on Soviet Constructive Fashion in 1920s (1920년대 소비에트 구성주의 패션에 관한 연구)

  • 조윤경;금기숙
    • Journal of the Korean Society of Costume
    • /
    • v.36
    • /
    • pp.183-203
    • /
    • 1998
  • The wave of Avant-garde swept away all in the unique social background so called 'October Revolution' and the early 1900 Russian society which was able to absorb and accept anything. The Russian avant-garde has been affected by the Cubism and the Futurism those had peculiarly appeared in the early twentieth century, spreaded out to three spheres: the Suprematism, the Rayonism and the Constructivism. The Russian Constructivism has appeared in this background, concretely and ideally ex-pressed the ideology of the revolution into the artistic form and made an huge influence to the whole Russian society. The Constructivist like Tatlin, naum Gabo, Pevaner, Rodchenko, Stepanova, Popova and Exter gave great effect on the Soviet Constructive fashion design in 1920's after the Revolution. The Soviet costume in 1920s hold in common the characteristicss of the Constructive graphic as it is, geometrical and abstractive form, energetic and motility. In fashion design, these graphic qualities have been showed as the application of geometrical form and architectural image, physical distortion and transformation. And in textile design, the simple, dynamical presentation has been appeared. We can classify the Soviet costume at this time into three occasions. The first term is from late 1910 th mid 1920, and it is altered from folk costume design to modern one. With Lamanova as the first on the list, using the folk mitif, the Constructive expression of simple form has been gradually revealed in design. Designers like Makarova, Pribylskaia and Mukhina produced the plane, simple chemise style with the decoration of the Russian traditional motif. From early to late 1920 is the second term, and it is at the pick of the most active processing of the Constructive design. Not only at the costume in daily life but also at the theatrical costume and textile, the con-structive design has been represented all avail-able fields. Many Constructivists including Stepanova, Popova, Exter and Rodchenko took part in the textile design and costume design so as to evlvo their aesthetic concept. The third term is from late 1920 to early 1930. The socialistic realism has dominated over the whole culture and art, the revolutionary dynamic motif has been presented also in textile design. The formative features of Soviet Constructive fashion design are; silhouette, from, motif, color and fabric. The first, the silhouette : a straight rectangular silhouetted has been expressed through the whole period and a volumed one with distorted human body shape has introduced in the theatrical costume design. The second, the form: many lengthened rectangular forms have been made at beginnings, but to the middle period, geometrical, architectural forms have been more showed and there are energy and movement in design. At the last period, only a partial feature-division has been seen. The third, the motif; no pattern or ethnic motif has been partly used at beginnings, a figure like circle, tri-angle has gradually appeared in textile design. At latter period, a real-existent motif like an airplane has been represented with graphing and simplicity. The fourth, the color ; because of insufficient dyeing, neutral color like black or grey color has been mainly covered, but after middle term, a primary color or pastel tone has been seen, contrast of the fabric; without much development of textile industry after the Revolution, thick and durable fabrics have been the main stream, but as time had going to the last period, fabrics such as linen, cotton, velvet and silk have been varously choesn. At the theatrical costume, new materials like plastics and metals that were able to accentuate the form. The pursuit of popularity, simplicity and functionalism that the basic concept of Constructive fashion is one of the "beauty" which has been searching in modern fashion. And now we can appreciate how innovative and epochal this Soviet Constructive fashion movement was.ement was.

  • PDF

A Method of Reusing Kinematic Information for Virtual Facilities (동작 정보를 갖는 가상설비 데이터 재활용 방법론)

  • Ko, Min-Suk;Shin, Hye-Seon;Wang, Gi-Nam;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • This paper proposes a method for reusing kinematic design data for virtual facilities, Making a virtual model of a facility involves two major activities: geometric design (virtual model visualization) and kinematic design that should be remodeled frequently whenever design changes occur, Conventionally, a virtual model of an automated facility focuses on the design level, which mainly deals with design verification, alternative comparison, and geometric model diagnosis, Although a design level model can be designed with the information of past models from PLM system, a simulation level model is not sufficient utilized to be reused for kinematic design purpose, We propose a method for reusing kinematic information of a past simulation model to cope with this problem, We use the concept or the 'center of mass', which is a point representing the mean position of the matter in a body or system. And we also use comparison method of a boundary box to identity which 3D objects have to be involved from the design model to a link structure that is contained in the simulation model. Because a proposed method only use not a historical approach but a geometrical approach, it is more effective to apply to the field.

Optimal Design of a Planar-Type Antenna with a Reduced Number of Design Parameters Using Taguchi Method and Adaptive Particle Swarm Optimization

  • Lee, Jeong-Hyeok;Jang, Dong-Hyeok;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2019-2024
    • /
    • 2014
  • This paper presents a method to optimize the design of a planar-type antenna and reduce the number of design parameters for rapid computation. The electromagnetic characteristics of the structure are analyzed, and Taguchi method is used to identify critical design parameters. Adaptive particle swarm optimization, which has a faster convergence rate than particle swarm optimization, is used to achieve the design goal effectively. A compact dual-band USB dongle antenna is tested to verify the advantage of the proposed method. In this case, we can use only five selected geometrical parameters instead of eighteen to accelerate the optimization of the antenna design. The 10 dB bandwidth for return loss ranges from 2.3 GHz to 2.7 GHz and from 5.1 GHz to 5.9 GHz, covering all the WiBro, Bluetooth, WiMAX, and 802.11 b/g/n WLAN bands in both simulation and measurement. The optimization process enables the antenna design to achieve the required performance with fewer design parameters.

A Study of the Formative Characteristics in Architecture and Fashion of the Modernism Period (모더니즘 시대의 건축과 패션에 나타난 조형적 특성에 관한 연구)

  • Kim Hye-Young;Hur Da-Sul
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.4 s.94
    • /
    • pp.62-78
    • /
    • 2005
  • The modern period was the time that the most radical and extensive social and mental changes were occurring throughout the history, and modernism was prevailing as a general cognition system of people. Modernism, which carries principles of progress, belief in application of scientific technology, worship of reason, ideal of liberty as a col-e value of civilization, was plated as a leading ideology in the realm of society, culture and art In the early 20th century. In this study, the formative characteristics of modernism seen in architecture and fashion are analogized and analyzed in four ways ell the basis of the theory of p. Greenhalgh. First, 'Standardization for mass-production', which is analogized which P. Greenhalgh's 'Decompart-mentalisation', 'Social Morality', and' Technology'. Standardization for mass-production in architecture focuses on the development of a design prototype in order to mass produce; the development of ready-made clothes is actively done ill the fashion area for the same purpose as well. Second, 'Rational functionality' coming from P. Greenhalgh's 'The total work of art' and 'Function'. While rational functionality in architecture puts an emphasis on the rational operation of all the functions in regard to the relation between each part and the whole, rational functionality in fashion call be mainly seen in a dramatic increase in physical activity which could be hardly found before the modernism period. Namely, all the fashion design elements are developed for a certain rational and functional design on each part as well as on the whole in order to greatly increase physical activity. Third, 'the pursuit for genuineness of objects and universality of beauty' is on the analogy of P Greenhalgh's 'Truth', 'Anti-historicism', 'Abstraction', 'Internationalism/Universality'. This idea is adopted in architecture in the form of design of geometrical abstraction. In the same way, design using geometrical abstraction comes to have a significant meaning in fashion of the modernism period. So to speak, modernism architecture and fashion can be reborn to become an inter·national style by giving up the decorative and regional design prevailing before modernism and by expressing universal aesthetics in the form of simplicity and abstraction instead. Fourth, 'Expression of progress through a change in a viewpoint' stems from P. Greenhalgh's 'Progress', 'Transformation of Consciousness', 'Theology'. In architecture, this concept appears by using new construction materials and methods and by representing new aesthetical idea. As a result, it makes it possible for people to make progress for better lives. Like in architecture, new attempts for material application and processing are made in fashion. This gives rise to a general change in a viewpoint related to fashion, so that a flew fashion design which there has never been before can come out.